针对有经验的用户的多元映射:将外在和内在映射与单变量映射进行比较

IF 0.6 Q3 GEOGRAPHY Miscellanea Geographica Pub Date : 2021-07-25 DOI:10.2478/mgrsd-2020-0068
J. Korycka-Skorupa, I. Gołębiowska
{"title":"针对有经验的用户的多元映射:将外在和内在映射与单变量映射进行比较","authors":"J. Korycka-Skorupa, I. Gołębiowska","doi":"10.2478/mgrsd-2020-0068","DOIUrl":null,"url":null,"abstract":"Abstract Multivariate mapping is a technique in which multivariate data are encoded into a single map. A variety of design solutions for multivariate mapping refers to the number of phenomena mapped, the map type, and the visual variables applied. Unlike other authors who have mainly evaluated bivariate maps, in our empirical study we compared three solutions when mapping four variables: two types of multivariate maps (intrinsic and extrinsic) and a simple univariate alternative (serving as a baseline). We analysed usability performance metrics (answer time, answer accuracy, subjective rating of task difficulty) and eye-tracking data. The results suggested that experts used all the tested maps with similar results for answer time and accuracy, even when using four-variable intrinsic maps, which is considered to be a challenging solution. However, eye-tracking data provided more nuances in relation to the difference in cognitive effort evoked by the tested maps across task types.","PeriodicalId":44469,"journal":{"name":"Miscellanea Geographica","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2021-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multivariate mapping for experienced users: comparing extrinsic and intrinsic maps with univariate maps\",\"authors\":\"J. Korycka-Skorupa, I. Gołębiowska\",\"doi\":\"10.2478/mgrsd-2020-0068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Multivariate mapping is a technique in which multivariate data are encoded into a single map. A variety of design solutions for multivariate mapping refers to the number of phenomena mapped, the map type, and the visual variables applied. Unlike other authors who have mainly evaluated bivariate maps, in our empirical study we compared three solutions when mapping four variables: two types of multivariate maps (intrinsic and extrinsic) and a simple univariate alternative (serving as a baseline). We analysed usability performance metrics (answer time, answer accuracy, subjective rating of task difficulty) and eye-tracking data. The results suggested that experts used all the tested maps with similar results for answer time and accuracy, even when using four-variable intrinsic maps, which is considered to be a challenging solution. However, eye-tracking data provided more nuances in relation to the difference in cognitive effort evoked by the tested maps across task types.\",\"PeriodicalId\":44469,\"journal\":{\"name\":\"Miscellanea Geographica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Miscellanea Geographica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/mgrsd-2020-0068\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Miscellanea Geographica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/mgrsd-2020-0068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOGRAPHY","Score":null,"Total":0}
引用次数: 1

摘要

多变量映射是一种将多变量数据编码成单一映射的技术。多变量映射的各种设计解决方案是指映射的现象数量、映射类型和应用的可视化变量。与其他主要评估二元图的作者不同,在我们的实证研究中,我们在映射四个变量时比较了三种解决方案:两种类型的多元图(内在和外在)和一种简单的单变量替代方案(作为基线)。我们分析了可用性性能指标(回答时间、回答准确性、任务难度的主观评分)和眼球追踪数据。结果表明,专家们在回答时间和准确性方面使用了所有测试过的地图,结果相似,即使使用四变量内在地图,这被认为是一个具有挑战性的解决方案。然而,眼动追踪数据提供了更多与不同任务类型的测试图所引起的认知努力差异有关的细微差别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multivariate mapping for experienced users: comparing extrinsic and intrinsic maps with univariate maps
Abstract Multivariate mapping is a technique in which multivariate data are encoded into a single map. A variety of design solutions for multivariate mapping refers to the number of phenomena mapped, the map type, and the visual variables applied. Unlike other authors who have mainly evaluated bivariate maps, in our empirical study we compared three solutions when mapping four variables: two types of multivariate maps (intrinsic and extrinsic) and a simple univariate alternative (serving as a baseline). We analysed usability performance metrics (answer time, answer accuracy, subjective rating of task difficulty) and eye-tracking data. The results suggested that experts used all the tested maps with similar results for answer time and accuracy, even when using four-variable intrinsic maps, which is considered to be a challenging solution. However, eye-tracking data provided more nuances in relation to the difference in cognitive effort evoked by the tested maps across task types.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
21
审稿时长
14 weeks
期刊最新文献
Wartanian glacial sediments: insights into deglaciation of Polish Lowlands and Highlands border for geotourism Using machine learning techniques to reconstruct the signal observed by the GRACE mission based on AMSR-E microwave data Preliminary geological work, based on remote sensing analysis, using artificially enhanced satellite data Climate change in Poland – the assessment of the conversation with ChatGPT Comparison of thunderstorm days in Poland based on SYNOP reports and PERUN lightning detection system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1