单次口服洛伐他汀后生物场能量处理及其对大鼠洛伐他汀羟基酸相对口服生物利用度的影响

Jana S
{"title":"单次口服洛伐他汀后生物场能量处理及其对大鼠洛伐他汀羟基酸相对口服生物利用度的影响","authors":"Jana S","doi":"10.23880/beba-16000150","DOIUrl":null,"url":null,"abstract":"Lovastatin is a lipid-lowering drug used to reduce the risk of cardiovascular disease. Lovastatin shows poor oral bioavailability (<5%) because of its low water solubility and short half-life. Therefore, the present study was performed to determine the effects of the Trivedi Effect ® - Consciousness Energy Treatment (Blessing) on lovastatin and rats through the measurement of plasma lovastatin hydroxy acid concentrations after the oral administration of lovastatin in rats. The test item, lovastatin was divided into two parts. One part was denoted as the control, while the other part was defined as the Biofield Energy Treated sample, which received the Biofield Energy Treatment for about 3 minutes by renowned Biofield Energy Healer, Dahryn Trivedi. Additionally, one group of animals also received Biofield Energy Treatment under similar conditions. The Biofield Energy Healer who was located in the USA, while the test samples and animals were located in the research laboratory in India. Lovastatin oral formulations were administrated by oral gavage at a dose of 50 mg/kg in groups viz . G1 (untreated lovastatin), G2 (Biofield Treated lovastatin), and G3 (Biofield Treated animals received untreated lovastatin) group. The majority of lovastatin was rapidly converted to its metabolite, i.e. , lovastatin hydroxy acid following the oral administration. The pharmacokinetic parameter, the C max of lovastatin hydroxy acid was significantly altered by 155.76% and -24.82% in G2 and G3, respectively compared to G1. The T max of lovastatin hydroxy acid was significantly increased by 254.55% in G2 and 51.52% in G3 compared to G1. The mean residence time of lovastatin hydroxy acid was also altered in G2 (-30.46%) and G3 (3.96%), as compared to the G1. The relative oral bioavailability (Fr) of lovastatin was significantly increased by 281.87% in the group G2 and 15.71% in the group G3 compared to the G1. These data suggest that the Biofield Energy Treatment could be considered as an innovative strategy that opens new avenues to improve the bioavailability of nutraceuticals/pharmaceuticals and can also modulate the therapeutic performance of orally active molecules. The Biofield Energy Treated lovastatin could be beneficial for the treatment of cardiovascular disease, which includes heart attack, stroke, atherosclerosis, coronary revascularization, coronary death, myocardial infarction, unstable angina, peripheral artery disease, abdominal aortic aneurysm, chronic kidney disease, etc.","PeriodicalId":8995,"journal":{"name":"Bioequivalence &amp; Bioavailability International Journal","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Biofield Energy Treatment and its Effect on the Relative Oral Bioavailability of Lovastatin Hydroxy Acid in Rats after a Single Oral Dose of Lovastatin\",\"authors\":\"Jana S\",\"doi\":\"10.23880/beba-16000150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lovastatin is a lipid-lowering drug used to reduce the risk of cardiovascular disease. Lovastatin shows poor oral bioavailability (<5%) because of its low water solubility and short half-life. Therefore, the present study was performed to determine the effects of the Trivedi Effect ® - Consciousness Energy Treatment (Blessing) on lovastatin and rats through the measurement of plasma lovastatin hydroxy acid concentrations after the oral administration of lovastatin in rats. The test item, lovastatin was divided into two parts. One part was denoted as the control, while the other part was defined as the Biofield Energy Treated sample, which received the Biofield Energy Treatment for about 3 minutes by renowned Biofield Energy Healer, Dahryn Trivedi. Additionally, one group of animals also received Biofield Energy Treatment under similar conditions. The Biofield Energy Healer who was located in the USA, while the test samples and animals were located in the research laboratory in India. Lovastatin oral formulations were administrated by oral gavage at a dose of 50 mg/kg in groups viz . G1 (untreated lovastatin), G2 (Biofield Treated lovastatin), and G3 (Biofield Treated animals received untreated lovastatin) group. The majority of lovastatin was rapidly converted to its metabolite, i.e. , lovastatin hydroxy acid following the oral administration. The pharmacokinetic parameter, the C max of lovastatin hydroxy acid was significantly altered by 155.76% and -24.82% in G2 and G3, respectively compared to G1. The T max of lovastatin hydroxy acid was significantly increased by 254.55% in G2 and 51.52% in G3 compared to G1. The mean residence time of lovastatin hydroxy acid was also altered in G2 (-30.46%) and G3 (3.96%), as compared to the G1. The relative oral bioavailability (Fr) of lovastatin was significantly increased by 281.87% in the group G2 and 15.71% in the group G3 compared to the G1. These data suggest that the Biofield Energy Treatment could be considered as an innovative strategy that opens new avenues to improve the bioavailability of nutraceuticals/pharmaceuticals and can also modulate the therapeutic performance of orally active molecules. The Biofield Energy Treated lovastatin could be beneficial for the treatment of cardiovascular disease, which includes heart attack, stroke, atherosclerosis, coronary revascularization, coronary death, myocardial infarction, unstable angina, peripheral artery disease, abdominal aortic aneurysm, chronic kidney disease, etc.\",\"PeriodicalId\":8995,\"journal\":{\"name\":\"Bioequivalence &amp; Bioavailability International Journal\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioequivalence &amp; Bioavailability International Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23880/beba-16000150\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioequivalence &amp; Bioavailability International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23880/beba-16000150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

洛伐他汀是一种降脂药物,用于降低心血管疾病的风险。洛伐他汀水溶性低,半衰期短,口服生物利用度较差(<5%)。因此,本研究通过测量大鼠口服洛伐他汀后血浆洛伐他汀羟基酸浓度,来确定Trivedi Effect®- Consciousness Energy Treatment (Blessing)对洛伐他汀和大鼠的影响。试验项目洛伐他汀分为两部分。一部分被标记为对照,另一部分被定义为生物场能量处理过的样本,由著名的生物场能量治疗师Dahryn Trivedi进行约3分钟的生物场能量处理。另外,一组动物在相同条件下也接受了生物场能量处理。生物场能量治疗师位于美国,而测试样本和动物位于印度的研究实验室。洛伐他汀口服制剂按50mg /kg灌胃给药。G1组(未治疗的洛伐他汀组)、G2组(Biofield治疗的洛伐他汀组)和G3组(Biofield治疗的动物未治疗的洛伐他汀组)。口服洛伐他汀后,大部分洛伐他汀迅速转化为其代谢物,即洛伐他汀羟基酸。药动学参数洛伐他汀羟基酸C max在G2和G3组较G1组分别改变了155.76%和-24.82%。G2组洛伐他汀羟酸T max较G1组显著增高254.55%,G3组显著增高51.52%。与G1组相比,G2组(-30.46%)和G3组(3.96%)洛伐他汀羟基酸的平均停留时间也有所改变。与G1组相比,G2组洛伐他汀的相对口服生物利用度(Fr)显著提高281.87%,G3组显著提高15.71%。这些数据表明,生物场能量治疗可以被视为一种创新策略,为提高营养保健品/药品的生物利用度开辟了新的途径,也可以调节口服活性分子的治疗性能。经生物场能量处理的洛伐他汀可有益于心血管疾病的治疗,包括心脏病发作、中风、动脉粥样硬化、冠状动脉血运重建术、冠状动脉死亡、心肌梗死、不稳定型心绞痛、外周动脉疾病、腹主动脉瘤、慢性肾病等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Biofield Energy Treatment and its Effect on the Relative Oral Bioavailability of Lovastatin Hydroxy Acid in Rats after a Single Oral Dose of Lovastatin
Lovastatin is a lipid-lowering drug used to reduce the risk of cardiovascular disease. Lovastatin shows poor oral bioavailability (<5%) because of its low water solubility and short half-life. Therefore, the present study was performed to determine the effects of the Trivedi Effect ® - Consciousness Energy Treatment (Blessing) on lovastatin and rats through the measurement of plasma lovastatin hydroxy acid concentrations after the oral administration of lovastatin in rats. The test item, lovastatin was divided into two parts. One part was denoted as the control, while the other part was defined as the Biofield Energy Treated sample, which received the Biofield Energy Treatment for about 3 minutes by renowned Biofield Energy Healer, Dahryn Trivedi. Additionally, one group of animals also received Biofield Energy Treatment under similar conditions. The Biofield Energy Healer who was located in the USA, while the test samples and animals were located in the research laboratory in India. Lovastatin oral formulations were administrated by oral gavage at a dose of 50 mg/kg in groups viz . G1 (untreated lovastatin), G2 (Biofield Treated lovastatin), and G3 (Biofield Treated animals received untreated lovastatin) group. The majority of lovastatin was rapidly converted to its metabolite, i.e. , lovastatin hydroxy acid following the oral administration. The pharmacokinetic parameter, the C max of lovastatin hydroxy acid was significantly altered by 155.76% and -24.82% in G2 and G3, respectively compared to G1. The T max of lovastatin hydroxy acid was significantly increased by 254.55% in G2 and 51.52% in G3 compared to G1. The mean residence time of lovastatin hydroxy acid was also altered in G2 (-30.46%) and G3 (3.96%), as compared to the G1. The relative oral bioavailability (Fr) of lovastatin was significantly increased by 281.87% in the group G2 and 15.71% in the group G3 compared to the G1. These data suggest that the Biofield Energy Treatment could be considered as an innovative strategy that opens new avenues to improve the bioavailability of nutraceuticals/pharmaceuticals and can also modulate the therapeutic performance of orally active molecules. The Biofield Energy Treated lovastatin could be beneficial for the treatment of cardiovascular disease, which includes heart attack, stroke, atherosclerosis, coronary revascularization, coronary death, myocardial infarction, unstable angina, peripheral artery disease, abdominal aortic aneurysm, chronic kidney disease, etc.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Mini Review on Current Challenges and Opportunities in the Management of Bovine Mastitis In Vitro Anticancer and Cytotoxic Activity of Ethanolic Extract of Phyllanthus reticulatus Poir. Against Hela Cell Line and Vero Cell Line Will the Organic Food Phenomenon Continue or Fade Away? Unveiling Revealing Nature's Bounty: A Comprehensive Exploration of Bioavailability in Natural Products An Anti-Inflammatory and Analgesic Drug Etoricoxib Investigated by Design of Experimentation (DOE) and in Vitro Characterization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1