介质圆柱体的无相微波成像:一种基于人工神经网络的方法

J. E. Fajardo, J. Galv'an, F. Vericat, C. M. Carlevaro, R. Irastorza
{"title":"介质圆柱体的无相微波成像:一种基于人工神经网络的方法","authors":"J. E. Fajardo, J. Galv'an, F. Vericat, C. M. Carlevaro, R. Irastorza","doi":"10.2528/PIER19080610","DOIUrl":null,"url":null,"abstract":"An inverse method for parameters estimation of infinite cylinders (the dielectric properties, location, and radius) in two dimensions from amplitude-only microwave information is presented. To this end two different Artificial Neural Networks (ANN) topologies are compared; Multilayer Perceptron (MLP) and a Convolutional Neural Network (CNN). Several simulations employing the Finite Differences in Time Domain (FDTD) method are performed to solve the direct electromagnetic problem and generate training, validation, and test sets for the ANN models. The magnitude of the mean errors in estimating the position and size of the cylinder are up to (1.9 $\\pm$ 3.3) mm and (0.2 $\\pm$ 0.8) mm for the MLP and CNN, respectively. The magnitude of the mean percentage relative errors in estimating the dielectric properties of the cylinder are up to (6.5 $\\pm$ 13.8) % and (0.0 $\\pm$ 7.2) % for the MLP and CNN, respectively. The errors in the parameters estimation from the MLP model are low, however, significantly lower errors were obtained with the CNN model. A validation example is shown using a simulation in three dimensions. Measurement examples with homogeneous and heterogeneous cylinders are presented aiming to prove the feasibility of the described method.","PeriodicalId":90705,"journal":{"name":"Progress in Electromagnetics Research Symposium : [proceedings]. Progress in Electromagnetics Research Symposium","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"PHASELESS MICROWAVE IMAGING OF DIELECTRIC CYLINDERS: AN ARTIFICIAL NEURAL NETWORKS-BASED APPROACH\",\"authors\":\"J. E. Fajardo, J. Galv'an, F. Vericat, C. M. Carlevaro, R. Irastorza\",\"doi\":\"10.2528/PIER19080610\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An inverse method for parameters estimation of infinite cylinders (the dielectric properties, location, and radius) in two dimensions from amplitude-only microwave information is presented. To this end two different Artificial Neural Networks (ANN) topologies are compared; Multilayer Perceptron (MLP) and a Convolutional Neural Network (CNN). Several simulations employing the Finite Differences in Time Domain (FDTD) method are performed to solve the direct electromagnetic problem and generate training, validation, and test sets for the ANN models. The magnitude of the mean errors in estimating the position and size of the cylinder are up to (1.9 $\\\\pm$ 3.3) mm and (0.2 $\\\\pm$ 0.8) mm for the MLP and CNN, respectively. The magnitude of the mean percentage relative errors in estimating the dielectric properties of the cylinder are up to (6.5 $\\\\pm$ 13.8) % and (0.0 $\\\\pm$ 7.2) % for the MLP and CNN, respectively. The errors in the parameters estimation from the MLP model are low, however, significantly lower errors were obtained with the CNN model. A validation example is shown using a simulation in three dimensions. Measurement examples with homogeneous and heterogeneous cylinders are presented aiming to prove the feasibility of the described method.\",\"PeriodicalId\":90705,\"journal\":{\"name\":\"Progress in Electromagnetics Research Symposium : [proceedings]. Progress in Electromagnetics Research Symposium\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Electromagnetics Research Symposium : [proceedings]. Progress in Electromagnetics Research Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2528/PIER19080610\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Electromagnetics Research Symposium : [proceedings]. Progress in Electromagnetics Research Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2528/PIER19080610","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

提出了一种利用仅限幅值的微波信息反演无限圆柱二维参数(介电特性、位置和半径)的逆方法。为此,比较了两种不同的人工神经网络(ANN)拓扑;多层感知器(MLP)和卷积神经网络(CNN)。采用时域有限差分(FDTD)方法进行了多次仿真,以解决直接电磁问题,并为人工神经网络模型生成训练集、验证集和测试集。对于MLP和CNN,估计圆柱体位置和尺寸的平均误差分别高达(1.9 $\pm$ 3.3) mm和(0.2 $\pm$ 0.8) mm。对于MLP和CNN,估计圆柱体介电性能的平均百分比相对误差分别高达(6.5 $\pm$ 13.8) %和(0.0 $\pm$ 7.2) %。MLP模型的参数估计误差较低,而CNN模型的误差明显较低。使用三维仿真显示了一个验证示例。给出了均匀和非均匀圆柱体的测量实例,以证明所述方法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PHASELESS MICROWAVE IMAGING OF DIELECTRIC CYLINDERS: AN ARTIFICIAL NEURAL NETWORKS-BASED APPROACH
An inverse method for parameters estimation of infinite cylinders (the dielectric properties, location, and radius) in two dimensions from amplitude-only microwave information is presented. To this end two different Artificial Neural Networks (ANN) topologies are compared; Multilayer Perceptron (MLP) and a Convolutional Neural Network (CNN). Several simulations employing the Finite Differences in Time Domain (FDTD) method are performed to solve the direct electromagnetic problem and generate training, validation, and test sets for the ANN models. The magnitude of the mean errors in estimating the position and size of the cylinder are up to (1.9 $\pm$ 3.3) mm and (0.2 $\pm$ 0.8) mm for the MLP and CNN, respectively. The magnitude of the mean percentage relative errors in estimating the dielectric properties of the cylinder are up to (6.5 $\pm$ 13.8) % and (0.0 $\pm$ 7.2) % for the MLP and CNN, respectively. The errors in the parameters estimation from the MLP model are low, however, significantly lower errors were obtained with the CNN model. A validation example is shown using a simulation in three dimensions. Measurement examples with homogeneous and heterogeneous cylinders are presented aiming to prove the feasibility of the described method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Associations between participation and personal factors in community-dwelling adults post-stroke. Transverse Orbital Angular Momentum of Spatiotemporal Optical Vortices Systemically Delivered, Deep-tissue Nanoscopic Light Sources Optical Neural Networks for Holographic Image Recognition (Invited Paper) Exceptional Ring by Non-Hermitian Sonic Crystals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1