bootComb R包中参数独立性假设的松弛

M. Henrion
{"title":"bootComb R包中参数独立性假设的松弛","authors":"M. Henrion","doi":"10.1017/exp.2022.13","DOIUrl":null,"url":null,"abstract":"Abstract Background The bootComb R package allows researchers to derive confidence intervals with correct target coverage for arbitrary combinations of arbitrary numbers of independently estimated parameters. Previous versions (<1.1.0) of bootComb used independent bootstrap sampling and required that the parameters themselves are independent—an unrealistic assumption in some real-world applications. Findings Using Gaussian copulas to define the dependence between parameters, the bootComb package has been extended to allow for dependent parameters. Implications The updated bootComb package can now handle cases of dependent parameters, with users specifying a correlation matrix defining the dependence structure. While in practice it may be difficult to know the exact dependence structure between parameters, bootComb allows running sensitivity analyses to assess the impact of parameter dependence on the resulting confidence interval for the combined parameter. Availability bootComb is available from the Comprehensive R Archive Network (https://CRAN.R-project.org/package=bootComb).","PeriodicalId":12269,"journal":{"name":"Experimental Results","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Relaxation of the parameter independence assumption in the bootComb R package\",\"authors\":\"M. Henrion\",\"doi\":\"10.1017/exp.2022.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Background The bootComb R package allows researchers to derive confidence intervals with correct target coverage for arbitrary combinations of arbitrary numbers of independently estimated parameters. Previous versions (<1.1.0) of bootComb used independent bootstrap sampling and required that the parameters themselves are independent—an unrealistic assumption in some real-world applications. Findings Using Gaussian copulas to define the dependence between parameters, the bootComb package has been extended to allow for dependent parameters. Implications The updated bootComb package can now handle cases of dependent parameters, with users specifying a correlation matrix defining the dependence structure. While in practice it may be difficult to know the exact dependence structure between parameters, bootComb allows running sensitivity analyses to assess the impact of parameter dependence on the resulting confidence interval for the combined parameter. Availability bootComb is available from the Comprehensive R Archive Network (https://CRAN.R-project.org/package=bootComb).\",\"PeriodicalId\":12269,\"journal\":{\"name\":\"Experimental Results\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Results\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/exp.2022.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Results","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/exp.2022.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

bootComb R包允许研究人员为任意数量的独立估计参数的任意组合导出具有正确目标覆盖率的置信区间。以前版本(<1.1.0)的bootComb使用独立的bootstrap采样,并且要求参数本身是独立的——这在一些实际应用中是不现实的假设。使用高斯copula来定义参数之间的依赖关系,bootComb包已经扩展到允许依赖参数。更新后的bootComb包现在可以处理依赖参数的情况,用户可以指定定义依赖结构的相关矩阵。虽然在实践中可能很难知道参数之间的确切依赖结构,但bootComb允许运行灵敏度分析来评估参数依赖性对组合参数的结果置信区间的影响。可用性bootComb可从综合R档案网络(https://CRAN.R-project.org/package=bootComb)获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Relaxation of the parameter independence assumption in the bootComb R package
Abstract Background The bootComb R package allows researchers to derive confidence intervals with correct target coverage for arbitrary combinations of arbitrary numbers of independently estimated parameters. Previous versions (<1.1.0) of bootComb used independent bootstrap sampling and required that the parameters themselves are independent—an unrealistic assumption in some real-world applications. Findings Using Gaussian copulas to define the dependence between parameters, the bootComb package has been extended to allow for dependent parameters. Implications The updated bootComb package can now handle cases of dependent parameters, with users specifying a correlation matrix defining the dependence structure. While in practice it may be difficult to know the exact dependence structure between parameters, bootComb allows running sensitivity analyses to assess the impact of parameter dependence on the resulting confidence interval for the combined parameter. Availability bootComb is available from the Comprehensive R Archive Network (https://CRAN.R-project.org/package=bootComb).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
0
期刊最新文献
THE COST OF PAEDIATRIC ABDOMINAL TUBERCULOSIS TREATMENT IN INDIA: EVIDENCE FROM A TEACHING HOSPITAL On L-derivatives and biextensions of Calabi–Yau motives Handedness and test anxiety: An examination of mixed-handed and consistent-handed students Analysis of declining trends in sugarcane yield at Wonji-Shoa Sugar Estate, Central Ethiopia Raw driving data of passenger cars considering traffic conditions in Semnan city
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1