土壤-植物-微生物连续体中磷和微量营养素的生物利用度

Z. Rengel
{"title":"土壤-植物-微生物连续体中磷和微量营养素的生物利用度","authors":"Z. Rengel","doi":"10.4067/S0718-27912008000400013","DOIUrl":null,"url":null,"abstract":"An increasing need to produce food for the expanding world population creates significant pressure on suitable land already in production and requires continuous expansion of food-producing ecosystems into less fertile areas. In every such food-producing system, crops and pastures must be provided with sufficient nutrients for vigorous growth and high outputs, putting an emphasis on understanding soil-plant microbe interactions governing nutrient acquisition by plants. This review will summarise the available knowledge on relevant interactions underlying plant acquisition of P and micronutrients (with an emphasis on Mn). Soils resulting in P and micronutrient deficiency in crops and pastures are abundant in the world, but such nutrient deficiency arises from poor P and micronutrient mobility rather than low total amounts present in soil (Rengel, 2001). Hence, the plant-available nutrient fraction and the concentration in the soil solution may be insufficient to satisfy plant requirements (Jorquera et al., 2008; Rengel and Marschner, 2005). Around 90% of the total P use in the world today is for food production (Jasinski, 2006). Hence, modern agricultural systems are dependent on continual inputs of P fertilizers processed from phosphate rock. Yet, the world reserves of phosphate rock are becoming increasingly scarce, and estimates are they will be depleted within 50-100 years, with a global peak in usage of P reserves occurring by 2040 (Jasinski, 2006). While the exact timing might be disputed, it is widely accepted that the quality of P rock is decreasing and cost increasing (indeed, the price of phosphate rock has risen 7-fold in the 14 months since Feb 2007) (Cordell, 2008).","PeriodicalId":54472,"journal":{"name":"Revista De La Ciencia Del Suelo Y Nutricion Vegetal","volume":"16 1","pages":"84-91"},"PeriodicalIF":0.0000,"publicationDate":"2008-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Bioavailability of Phosphorus and Micronutrients in the Soil-Plant-Microbe Continuum\",\"authors\":\"Z. Rengel\",\"doi\":\"10.4067/S0718-27912008000400013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An increasing need to produce food for the expanding world population creates significant pressure on suitable land already in production and requires continuous expansion of food-producing ecosystems into less fertile areas. In every such food-producing system, crops and pastures must be provided with sufficient nutrients for vigorous growth and high outputs, putting an emphasis on understanding soil-plant microbe interactions governing nutrient acquisition by plants. This review will summarise the available knowledge on relevant interactions underlying plant acquisition of P and micronutrients (with an emphasis on Mn). Soils resulting in P and micronutrient deficiency in crops and pastures are abundant in the world, but such nutrient deficiency arises from poor P and micronutrient mobility rather than low total amounts present in soil (Rengel, 2001). Hence, the plant-available nutrient fraction and the concentration in the soil solution may be insufficient to satisfy plant requirements (Jorquera et al., 2008; Rengel and Marschner, 2005). Around 90% of the total P use in the world today is for food production (Jasinski, 2006). Hence, modern agricultural systems are dependent on continual inputs of P fertilizers processed from phosphate rock. Yet, the world reserves of phosphate rock are becoming increasingly scarce, and estimates are they will be depleted within 50-100 years, with a global peak in usage of P reserves occurring by 2040 (Jasinski, 2006). While the exact timing might be disputed, it is widely accepted that the quality of P rock is decreasing and cost increasing (indeed, the price of phosphate rock has risen 7-fold in the 14 months since Feb 2007) (Cordell, 2008).\",\"PeriodicalId\":54472,\"journal\":{\"name\":\"Revista De La Ciencia Del Suelo Y Nutricion Vegetal\",\"volume\":\"16 1\",\"pages\":\"84-91\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista De La Ciencia Del Suelo Y Nutricion Vegetal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4067/S0718-27912008000400013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista De La Ciencia Del Suelo Y Nutricion Vegetal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4067/S0718-27912008000400013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

为不断扩大的世界人口生产粮食的需求日益增加,对已经在生产的适当土地造成了巨大压力,并要求不断将粮食生产生态系统扩展到不太肥沃的地区。在每一个这样的粮食生产系统中,必须为作物和牧场提供足够的营养,以促进旺盛的生长和高产量,重点是了解控制植物获取营养的土壤-植物微生物相互作用。这篇综述将总结现有的关于植物获取磷和微量元素(重点是锰)的相关相互作用的知识。导致作物和牧场磷和微量元素缺乏的土壤在世界上很多,但这种养分缺乏是由于土壤中磷和微量元素流动性差,而不是总量低(Rengel, 2001)。因此,土壤溶液中的植物有效养分部分和浓度可能不足以满足植物的需求(Jorquera et al., 2008;Rengel and Marschner, 2005)。目前世界上约90%的磷用于粮食生产(Jasinski, 2006)。因此,现代农业系统依赖于从磷矿中加工而成的磷肥的持续投入。然而,世界磷矿储量正变得越来越稀缺,估计它们将在50-100年内耗尽,全球磷矿储量的使用将在2040年达到峰值(Jasinski, 2006)。虽然确切的时间可能存在争议,但人们普遍认为,磷矿的质量正在下降,成本正在上升(事实上,磷矿的价格在2007年2月以来的14个月内上涨了7倍)(Cordell, 2008)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bioavailability of Phosphorus and Micronutrients in the Soil-Plant-Microbe Continuum
An increasing need to produce food for the expanding world population creates significant pressure on suitable land already in production and requires continuous expansion of food-producing ecosystems into less fertile areas. In every such food-producing system, crops and pastures must be provided with sufficient nutrients for vigorous growth and high outputs, putting an emphasis on understanding soil-plant microbe interactions governing nutrient acquisition by plants. This review will summarise the available knowledge on relevant interactions underlying plant acquisition of P and micronutrients (with an emphasis on Mn). Soils resulting in P and micronutrient deficiency in crops and pastures are abundant in the world, but such nutrient deficiency arises from poor P and micronutrient mobility rather than low total amounts present in soil (Rengel, 2001). Hence, the plant-available nutrient fraction and the concentration in the soil solution may be insufficient to satisfy plant requirements (Jorquera et al., 2008; Rengel and Marschner, 2005). Around 90% of the total P use in the world today is for food production (Jasinski, 2006). Hence, modern agricultural systems are dependent on continual inputs of P fertilizers processed from phosphate rock. Yet, the world reserves of phosphate rock are becoming increasingly scarce, and estimates are they will be depleted within 50-100 years, with a global peak in usage of P reserves occurring by 2040 (Jasinski, 2006). While the exact timing might be disputed, it is widely accepted that the quality of P rock is decreasing and cost increasing (indeed, the price of phosphate rock has risen 7-fold in the 14 months since Feb 2007) (Cordell, 2008).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
THE EFFECT OF COMPOST AND SEWAGE SLUDGE ON SOIL BIOLOGIC ACTIVITIES IN SALT AFFECTED SOIL Effects of liming and nitrogen fertilization on the development of Oenothera affinis in a soil affected by copper mining COMPARATIVE ANALYSIS OF SPLIT-WINDOW ALGORITHMS FOR ESTIMATING SOIL TEMPERATURE SOIL NUTRIENT CONTENTS AND ENZYMATIC CHARACTERISTICS AS AFFECTED BY 7-YEAR NO TILLAGE UNDER MAIZE CROPPING IN A MEADOW BROWN SOIL PHOSPHORUS-MOLYBDENUM RELATIONSHIP IN SOIL AND RED CLOVER (Trifolium pratense L.) ON AN ACID ANDISOL
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1