V. Miroshnikov, Oleksandr B. Savin, Mykhailo M. Hrebennikov, V. F. Demenko
{"title":"两圆柱支撑层的应力状态分析","authors":"V. Miroshnikov, Oleksandr B. Savin, Mykhailo M. Hrebennikov, V. F. Demenko","doi":"10.15407/pmach2023.01.015","DOIUrl":null,"url":null,"abstract":"The stress state of a homogeneous isotropic layer under the action of a spatial static external load is studied. Two circular cylindrical supports are cut into the body of the layer parallel to its borders. The supports and body of the layer are rigidly coupled. The spatial problem theory of elasticity is solved using the analytical-numerical generalized Fourier method. The layer is considered in the Cartesian coordinate system, the supports are considered in the local cylindrical coordinates. Stresses are set on the upper and lower surfaces of the layer. The supports are considered as cylindrical cavities in a layer with zero displacements set on their surfaces. Satisfying the boundary conditions on the upper and lower surfaces of the layer, as well as on the cylindrical surfaces of the cavities, a system of infinite integro-algebraic equations, which are further reduced to linear algebraic ones, is obtained. An infinite system is solved by the reduction method. In the numerical studies, the parameters of integration oscillatory functions are analyzed, problems at different distances between supports are solved. A unit load in the form of a rapidly decreasing function is applied to the upper boundary between the supports. For these cases, an analysis of the stress state was performed on the surfaces of the layer between the supports and on the cylindrical surfaces in contact with the supports. The numerical analysis showed that when the distance between the supports increases, the stresses σx on the lower and upper surfaces of the layer and the stresses τρφ on the surfaces of the cavities increase. The use of the analytical-numerical method made it possible to obtain a result with an accuracy of 10-4 for stress values from 0 to 1 at the order of the system of equations m=6. As the order of the system increases, the accuracy of fulfilling the boundary conditions will increase. The presented analytical-numerical solution can be used for high-precision determination of the stress-strain state of the presented problems type, as well a reference for problems based on numerical methods","PeriodicalId":16166,"journal":{"name":"Journal of Mechanical Engineering and Sciences","volume":"10 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of the Stress State for a Layer with Two Incut Cylindrical Supports\",\"authors\":\"V. Miroshnikov, Oleksandr B. Savin, Mykhailo M. Hrebennikov, V. F. Demenko\",\"doi\":\"10.15407/pmach2023.01.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The stress state of a homogeneous isotropic layer under the action of a spatial static external load is studied. Two circular cylindrical supports are cut into the body of the layer parallel to its borders. The supports and body of the layer are rigidly coupled. The spatial problem theory of elasticity is solved using the analytical-numerical generalized Fourier method. The layer is considered in the Cartesian coordinate system, the supports are considered in the local cylindrical coordinates. Stresses are set on the upper and lower surfaces of the layer. The supports are considered as cylindrical cavities in a layer with zero displacements set on their surfaces. Satisfying the boundary conditions on the upper and lower surfaces of the layer, as well as on the cylindrical surfaces of the cavities, a system of infinite integro-algebraic equations, which are further reduced to linear algebraic ones, is obtained. An infinite system is solved by the reduction method. In the numerical studies, the parameters of integration oscillatory functions are analyzed, problems at different distances between supports are solved. A unit load in the form of a rapidly decreasing function is applied to the upper boundary between the supports. For these cases, an analysis of the stress state was performed on the surfaces of the layer between the supports and on the cylindrical surfaces in contact with the supports. The numerical analysis showed that when the distance between the supports increases, the stresses σx on the lower and upper surfaces of the layer and the stresses τρφ on the surfaces of the cavities increase. The use of the analytical-numerical method made it possible to obtain a result with an accuracy of 10-4 for stress values from 0 to 1 at the order of the system of equations m=6. As the order of the system increases, the accuracy of fulfilling the boundary conditions will increase. The presented analytical-numerical solution can be used for high-precision determination of the stress-strain state of the presented problems type, as well a reference for problems based on numerical methods\",\"PeriodicalId\":16166,\"journal\":{\"name\":\"Journal of Mechanical Engineering and Sciences\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mechanical Engineering and Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15407/pmach2023.01.015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanical Engineering and Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/pmach2023.01.015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Analysis of the Stress State for a Layer with Two Incut Cylindrical Supports
The stress state of a homogeneous isotropic layer under the action of a spatial static external load is studied. Two circular cylindrical supports are cut into the body of the layer parallel to its borders. The supports and body of the layer are rigidly coupled. The spatial problem theory of elasticity is solved using the analytical-numerical generalized Fourier method. The layer is considered in the Cartesian coordinate system, the supports are considered in the local cylindrical coordinates. Stresses are set on the upper and lower surfaces of the layer. The supports are considered as cylindrical cavities in a layer with zero displacements set on their surfaces. Satisfying the boundary conditions on the upper and lower surfaces of the layer, as well as on the cylindrical surfaces of the cavities, a system of infinite integro-algebraic equations, which are further reduced to linear algebraic ones, is obtained. An infinite system is solved by the reduction method. In the numerical studies, the parameters of integration oscillatory functions are analyzed, problems at different distances between supports are solved. A unit load in the form of a rapidly decreasing function is applied to the upper boundary between the supports. For these cases, an analysis of the stress state was performed on the surfaces of the layer between the supports and on the cylindrical surfaces in contact with the supports. The numerical analysis showed that when the distance between the supports increases, the stresses σx on the lower and upper surfaces of the layer and the stresses τρφ on the surfaces of the cavities increase. The use of the analytical-numerical method made it possible to obtain a result with an accuracy of 10-4 for stress values from 0 to 1 at the order of the system of equations m=6. As the order of the system increases, the accuracy of fulfilling the boundary conditions will increase. The presented analytical-numerical solution can be used for high-precision determination of the stress-strain state of the presented problems type, as well a reference for problems based on numerical methods
期刊介绍:
The Journal of Mechanical Engineering & Sciences "JMES" (ISSN (Print): 2289-4659; e-ISSN: 2231-8380) is an open access peer-review journal (Indexed by Emerging Source Citation Index (ESCI), WOS; SCOPUS Index (Elsevier); EBSCOhost; Index Copernicus; Ulrichsweb, DOAJ, Google Scholar) which publishes original and review articles that advance the understanding of both the fundamentals of engineering science and its application to the solution of challenges and problems in mechanical engineering systems, machines and components. It is particularly concerned with the demonstration of engineering science solutions to specific industrial problems. Original contributions providing insight into the use of analytical, computational modeling, structural mechanics, metal forming, behavior and application of advanced materials, impact mechanics, strain localization and other effects of nonlinearity, fluid mechanics, robotics, tribology, thermodynamics, and materials processing generally from the core of the journal contents are encouraged. Only original, innovative and novel papers will be considered for publication in the JMES. The authors are required to confirm that their paper has not been submitted to any other journal in English or any other language. The JMES welcome contributions from all who wishes to report on new developments and latest findings in mechanical engineering.