ReservoirComputing。[j]:一种高效模块化的油藏计算模型库

Francesco Martinuzzi, Chris Rackauckas, Anas Abdelrehim, M. Mahecha, Karin Mora
{"title":"ReservoirComputing。[j]:一种高效模块化的油藏计算模型库","authors":"Francesco Martinuzzi, Chris Rackauckas, Anas Abdelrehim, M. Mahecha, Karin Mora","doi":"10.48550/arXiv.2204.05117","DOIUrl":null,"url":null,"abstract":"We introduce ReservoirComputing.jl, an open source Julia library for reservoir computing models. The software offers a great number of algorithms presented in the literature, and allows to expand on them with both internal and external tools in a simple way. The implementation is highly modular, fast and comes with a comprehensive documentation, which includes reproduced experiments from literature. The code and documentation are hosted on Github under an MIT license https://github.com/SciML/ReservoirComputing.jl.","PeriodicalId":14794,"journal":{"name":"J. Mach. Learn. Res.","volume":"22 1","pages":"288:1-288:8"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"ReservoirComputing.jl: An Efficient and Modular Library for Reservoir Computing Models\",\"authors\":\"Francesco Martinuzzi, Chris Rackauckas, Anas Abdelrehim, M. Mahecha, Karin Mora\",\"doi\":\"10.48550/arXiv.2204.05117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce ReservoirComputing.jl, an open source Julia library for reservoir computing models. The software offers a great number of algorithms presented in the literature, and allows to expand on them with both internal and external tools in a simple way. The implementation is highly modular, fast and comes with a comprehensive documentation, which includes reproduced experiments from literature. The code and documentation are hosted on Github under an MIT license https://github.com/SciML/ReservoirComputing.jl.\",\"PeriodicalId\":14794,\"journal\":{\"name\":\"J. Mach. Learn. Res.\",\"volume\":\"22 1\",\"pages\":\"288:1-288:8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Mach. Learn. Res.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2204.05117\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Mach. Learn. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2204.05117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

我们介绍了水库计算。jl,一个开源的Julia库,用于油藏计算模型。该软件提供了大量在文献中提出的算法,并允许以一种简单的方式用内部和外部工具扩展它们。该实现是高度模块化的,快速的,并附带了一个全面的文档,其中包括从文献中复制的实验。代码和文档在MIT许可https://github.com/SciML/ReservoirComputing.jl下托管在Github上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ReservoirComputing.jl: An Efficient and Modular Library for Reservoir Computing Models
We introduce ReservoirComputing.jl, an open source Julia library for reservoir computing models. The software offers a great number of algorithms presented in the literature, and allows to expand on them with both internal and external tools in a simple way. The implementation is highly modular, fast and comes with a comprehensive documentation, which includes reproduced experiments from literature. The code and documentation are hosted on Github under an MIT license https://github.com/SciML/ReservoirComputing.jl.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Scalable Computation of Causal Bounds A Unified Framework for Factorizing Distributional Value Functions for Multi-Agent Reinforcement Learning Adaptive False Discovery Rate Control with Privacy Guarantee Fairlearn: Assessing and Improving Fairness of AI Systems Generalization Bounds for Adversarial Contrastive Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1