{"title":"ZnAl2O4催化一锅氧化将丁香酚转化为香兰素","authors":"Damiana Nofita Birhi, Adzkia Qisthi Ismail, Elvina Dhiaul Iftitah, W. Warsito","doi":"10.21776/ub.jpacr.2021.010.03.622","DOIUrl":null,"url":null,"abstract":"In this study, ZnAl2O4 catalyst was synthesized with the capability of transforming eugenol to vanillin through One-Pot Catalytic Oxidation. ZnAl2O4 was synthesized from Zn(CH3COO)2.2H2O and Al2O3 using the wet-impregnation method, and characterized by FTIR, XRD, and SEM. One-Pot Catalytic Oxidation was conducted by heating under reflux at 150oC using nitrobenzene and a certain amount of ZnAl2O4 catalyst (4% and 7%) for 2 and 3 hours of reaction. Catalytic Oxidation is also carried out without catalyst as a comparison. The vanillin product was confirmed by GC and spectral data achieved from UV-Vis, FTIR, and mass spectrometry. The results revealed that transforming eugenol to vanillin using ZnAl2O4 catalyst provides a better selectivity value than without using the catalyst, is 100% for the use of 4% catalyst in 2 hours, while without catalyst gives 88% in 3 hours. In addition, the use of 4% catalyst in 3 hours gives 94% for selectivity of vanillin, and the use of 7% catalyst gives selectivity values at 82% and 85%, respectively for 2 hours and 3 hours. The conversion rate of the use of catalyst and without catalyst gives the perfect rate at 100%, but the use of catalyst produces better vanillin with percent yield at 2.485 for 2 hours, and 3.22% for 3 hours, while without catalyst have percent yield of vanillin at 1.94% for 3 hours.","PeriodicalId":22728,"journal":{"name":"The Journal of Pure and Applied Chemistry Research","volume":"2015 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"One-Pot Catalytic Oxidation for Transforming Eugenol to Vanillin Using ZnAl2O4 Catalyst\",\"authors\":\"Damiana Nofita Birhi, Adzkia Qisthi Ismail, Elvina Dhiaul Iftitah, W. Warsito\",\"doi\":\"10.21776/ub.jpacr.2021.010.03.622\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, ZnAl2O4 catalyst was synthesized with the capability of transforming eugenol to vanillin through One-Pot Catalytic Oxidation. ZnAl2O4 was synthesized from Zn(CH3COO)2.2H2O and Al2O3 using the wet-impregnation method, and characterized by FTIR, XRD, and SEM. One-Pot Catalytic Oxidation was conducted by heating under reflux at 150oC using nitrobenzene and a certain amount of ZnAl2O4 catalyst (4% and 7%) for 2 and 3 hours of reaction. Catalytic Oxidation is also carried out without catalyst as a comparison. The vanillin product was confirmed by GC and spectral data achieved from UV-Vis, FTIR, and mass spectrometry. The results revealed that transforming eugenol to vanillin using ZnAl2O4 catalyst provides a better selectivity value than without using the catalyst, is 100% for the use of 4% catalyst in 2 hours, while without catalyst gives 88% in 3 hours. In addition, the use of 4% catalyst in 3 hours gives 94% for selectivity of vanillin, and the use of 7% catalyst gives selectivity values at 82% and 85%, respectively for 2 hours and 3 hours. The conversion rate of the use of catalyst and without catalyst gives the perfect rate at 100%, but the use of catalyst produces better vanillin with percent yield at 2.485 for 2 hours, and 3.22% for 3 hours, while without catalyst have percent yield of vanillin at 1.94% for 3 hours.\",\"PeriodicalId\":22728,\"journal\":{\"name\":\"The Journal of Pure and Applied Chemistry Research\",\"volume\":\"2015 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Pure and Applied Chemistry Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21776/ub.jpacr.2021.010.03.622\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Pure and Applied Chemistry Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21776/ub.jpacr.2021.010.03.622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
One-Pot Catalytic Oxidation for Transforming Eugenol to Vanillin Using ZnAl2O4 Catalyst
In this study, ZnAl2O4 catalyst was synthesized with the capability of transforming eugenol to vanillin through One-Pot Catalytic Oxidation. ZnAl2O4 was synthesized from Zn(CH3COO)2.2H2O and Al2O3 using the wet-impregnation method, and characterized by FTIR, XRD, and SEM. One-Pot Catalytic Oxidation was conducted by heating under reflux at 150oC using nitrobenzene and a certain amount of ZnAl2O4 catalyst (4% and 7%) for 2 and 3 hours of reaction. Catalytic Oxidation is also carried out without catalyst as a comparison. The vanillin product was confirmed by GC and spectral data achieved from UV-Vis, FTIR, and mass spectrometry. The results revealed that transforming eugenol to vanillin using ZnAl2O4 catalyst provides a better selectivity value than without using the catalyst, is 100% for the use of 4% catalyst in 2 hours, while without catalyst gives 88% in 3 hours. In addition, the use of 4% catalyst in 3 hours gives 94% for selectivity of vanillin, and the use of 7% catalyst gives selectivity values at 82% and 85%, respectively for 2 hours and 3 hours. The conversion rate of the use of catalyst and without catalyst gives the perfect rate at 100%, but the use of catalyst produces better vanillin with percent yield at 2.485 for 2 hours, and 3.22% for 3 hours, while without catalyst have percent yield of vanillin at 1.94% for 3 hours.