X. Chen, Jie Kang, Qiu Sun, Cheng Liu, Hongling Wang, Chen Wang, S. Gopinath
{"title":"碳纳米线交叉指状电极表面的电流-伏特生物传感“胱抑素C”:主动脉肿胀的临床标志物分析","authors":"X. Chen, Jie Kang, Qiu Sun, Cheng Liu, Hongling Wang, Chen Wang, S. Gopinath","doi":"10.1155/2022/8160502","DOIUrl":null,"url":null,"abstract":"A carbon nanowire-modified surface with interdigitated electrode (IDE) sensing system was introduced to identify abdominal aortic aneurysm biomarker “papain,” also known as cysteine protease, used as the capture probe to identify Cystatin C. Papain was immobilized through the covalent integration of amine group on papain and the carboxyl group with carbon nanowire. This papain-modified electrode surface was utilized to detect the different concentrations of Cystatin C (100 pg/mL to 3.2 ng/mL). The interaction between papain and Cystatin C was monitored using a picoammeter, and the response curves were compared. With increasing Cystatin C concentrations, the total current levels were gradually increased with a linear range from 200 pg/mL to 3.2 ng/mL, and the current differences were plotted and the detection limit of Cystatin C was calculated as 200 pg/mL. The averaging of three independent experiments (n = 3) was made with 3δ estimation, and the determination coefficient was y = 1.8477 × 0.7303 and R2 = 0.9878. Furthermore, control experiments with creatinine and gliadin failed to bind the immobilized papain, indicating the specific detection of Cystatin C.","PeriodicalId":14974,"journal":{"name":"Journal of Analytical Methods in Chemistry","volume":"54 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Current-Volt Biosensing “Cystatin C” on Carbon Nanowired Interdigitated Electrode Surface: A Clinical Marker Analysis for Bulged Aorta\",\"authors\":\"X. Chen, Jie Kang, Qiu Sun, Cheng Liu, Hongling Wang, Chen Wang, S. Gopinath\",\"doi\":\"10.1155/2022/8160502\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A carbon nanowire-modified surface with interdigitated electrode (IDE) sensing system was introduced to identify abdominal aortic aneurysm biomarker “papain,” also known as cysteine protease, used as the capture probe to identify Cystatin C. Papain was immobilized through the covalent integration of amine group on papain and the carboxyl group with carbon nanowire. This papain-modified electrode surface was utilized to detect the different concentrations of Cystatin C (100 pg/mL to 3.2 ng/mL). The interaction between papain and Cystatin C was monitored using a picoammeter, and the response curves were compared. With increasing Cystatin C concentrations, the total current levels were gradually increased with a linear range from 200 pg/mL to 3.2 ng/mL, and the current differences were plotted and the detection limit of Cystatin C was calculated as 200 pg/mL. The averaging of three independent experiments (n = 3) was made with 3δ estimation, and the determination coefficient was y = 1.8477 × 0.7303 and R2 = 0.9878. Furthermore, control experiments with creatinine and gliadin failed to bind the immobilized papain, indicating the specific detection of Cystatin C.\",\"PeriodicalId\":14974,\"journal\":{\"name\":\"Journal of Analytical Methods in Chemistry\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2022-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Analytical Methods in Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/8160502\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Analytical Methods in Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1155/2022/8160502","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Current-Volt Biosensing “Cystatin C” on Carbon Nanowired Interdigitated Electrode Surface: A Clinical Marker Analysis for Bulged Aorta
A carbon nanowire-modified surface with interdigitated electrode (IDE) sensing system was introduced to identify abdominal aortic aneurysm biomarker “papain,” also known as cysteine protease, used as the capture probe to identify Cystatin C. Papain was immobilized through the covalent integration of amine group on papain and the carboxyl group with carbon nanowire. This papain-modified electrode surface was utilized to detect the different concentrations of Cystatin C (100 pg/mL to 3.2 ng/mL). The interaction between papain and Cystatin C was monitored using a picoammeter, and the response curves were compared. With increasing Cystatin C concentrations, the total current levels were gradually increased with a linear range from 200 pg/mL to 3.2 ng/mL, and the current differences were plotted and the detection limit of Cystatin C was calculated as 200 pg/mL. The averaging of three independent experiments (n = 3) was made with 3δ estimation, and the determination coefficient was y = 1.8477 × 0.7303 and R2 = 0.9878. Furthermore, control experiments with creatinine and gliadin failed to bind the immobilized papain, indicating the specific detection of Cystatin C.
期刊介绍:
Journal of Analytical Methods in Chemistry publishes papers reporting methods and instrumentation for chemical analysis, and their application to real-world problems. Articles may be either practical or theoretical.
Subject areas include (but are by no means limited to):
Separation
Spectroscopy
Mass spectrometry
Chromatography
Analytical Sample Preparation
Electrochemical analysis
Hyphenated techniques
Data processing
As well as original research, Journal of Analytical Methods in Chemistry also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.