一阶相变在布拉特的高压下发生。

E. Broadhurst, C. G. Wilson, Georgia A. Zissimou, F. Nudelman, Christos P. Constantinides, P. Koutentis, S. Parsons
{"title":"一阶相变在布拉特的高压下发生。","authors":"E. Broadhurst, C. G. Wilson, Georgia A. Zissimou, F. Nudelman, Christos P. Constantinides, P. Koutentis, S. Parsons","doi":"10.1107/s2052520622000191","DOIUrl":null,"url":null,"abstract":"The crystal structure of Blatter's radical (1,3-diphenyl-1,4-dihydrobenzo[e][1,2,4]triazin-4-yl) has been investigated between ambient pressure and 6.07 GPa. The sample remains in a compressed form of the ambient-pressure phase up to 5.34 GPa, the largest direction of strain being parallel to the direction of π-stacking interactions. The bulk modulus is 7.4 (6) GPa, with a pressure derivative equal to 9.33 (11). As pressure increases, the phenyl groups attached to the N1 and C3 positions of the triazinyl moieties of neighbouring pairs of molecules approach each other, causing the former to begin to rotate between 3.42 to 5.34 GPa. The onset of this phenyl rotation may be interpreted as a second-order phase transition which introduces a new mode for accommodating pressure. It is premonitory to a first-order isosymmetric phase transition which occurs on increasing pressure from 5.34 to 5.54 GPa. Although the phase transition is driven by volume minimization, rather than relief of unfavourable contacts, it is accompanied by a sharp jump in the orientation of the rotation angle of the phenyl group. DFT calculations suggest that the adoption of a more planar conformation by the triazinyl moiety at the phase transition can be attributed to relief of intramolecular H...H contacts at the transition. Although no dimerization of the radicals occurs, the π-stacking interactions are compressed by 0.341 (3) Å between ambient pressure and 6.07 GPa.","PeriodicalId":7080,"journal":{"name":"Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials","volume":"42 1","pages":"107-116"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A first-order phase transition in Blatter's radical at high pressure.\",\"authors\":\"E. Broadhurst, C. G. Wilson, Georgia A. Zissimou, F. Nudelman, Christos P. Constantinides, P. Koutentis, S. Parsons\",\"doi\":\"10.1107/s2052520622000191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The crystal structure of Blatter's radical (1,3-diphenyl-1,4-dihydrobenzo[e][1,2,4]triazin-4-yl) has been investigated between ambient pressure and 6.07 GPa. The sample remains in a compressed form of the ambient-pressure phase up to 5.34 GPa, the largest direction of strain being parallel to the direction of π-stacking interactions. The bulk modulus is 7.4 (6) GPa, with a pressure derivative equal to 9.33 (11). As pressure increases, the phenyl groups attached to the N1 and C3 positions of the triazinyl moieties of neighbouring pairs of molecules approach each other, causing the former to begin to rotate between 3.42 to 5.34 GPa. The onset of this phenyl rotation may be interpreted as a second-order phase transition which introduces a new mode for accommodating pressure. It is premonitory to a first-order isosymmetric phase transition which occurs on increasing pressure from 5.34 to 5.54 GPa. Although the phase transition is driven by volume minimization, rather than relief of unfavourable contacts, it is accompanied by a sharp jump in the orientation of the rotation angle of the phenyl group. DFT calculations suggest that the adoption of a more planar conformation by the triazinyl moiety at the phase transition can be attributed to relief of intramolecular H...H contacts at the transition. Although no dimerization of the radicals occurs, the π-stacking interactions are compressed by 0.341 (3) Å between ambient pressure and 6.07 GPa.\",\"PeriodicalId\":7080,\"journal\":{\"name\":\"Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials\",\"volume\":\"42 1\",\"pages\":\"107-116\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1107/s2052520622000191\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1107/s2052520622000191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了布拉特自由基(1,3-二苯基-1,4-二氢苯并[e][1,2,4]三嗪-4-基)在环境压力至6.07 GPa之间的晶体结构。在5.34 GPa时,试样仍处于常压相压缩状态,最大应变方向平行于π-叠加相互作用方向。体积模量为7.4 (6)GPa,压力导数为9.33(11)。随着压力的增加,附着在相邻分子对三嗪基部分的N1和C3位置上的苯基相互靠近,导致前者开始在3.42至5.34 GPa之间旋转。这种苯基旋转的开始可以解释为二级相变,它引入了一种新的适应压力的模式。当压力从5.34 GPa增加到5.54 GPa时,发生一阶等对称相变。虽然相变是由体积最小化驱动的,而不是不利接触的缓解,但它伴随着苯基旋转角取向的急剧跳跃。DFT计算表明,三嗪基部分在相变中采用更平面的构象可以归因于分子内H…H接触在相变中的减轻。虽然自由基没有发生二聚化,但在环境压力为6.07 GPa时π-stacking相互作用被压缩了0.341 (3)Å。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A first-order phase transition in Blatter's radical at high pressure.
The crystal structure of Blatter's radical (1,3-diphenyl-1,4-dihydrobenzo[e][1,2,4]triazin-4-yl) has been investigated between ambient pressure and 6.07 GPa. The sample remains in a compressed form of the ambient-pressure phase up to 5.34 GPa, the largest direction of strain being parallel to the direction of π-stacking interactions. The bulk modulus is 7.4 (6) GPa, with a pressure derivative equal to 9.33 (11). As pressure increases, the phenyl groups attached to the N1 and C3 positions of the triazinyl moieties of neighbouring pairs of molecules approach each other, causing the former to begin to rotate between 3.42 to 5.34 GPa. The onset of this phenyl rotation may be interpreted as a second-order phase transition which introduces a new mode for accommodating pressure. It is premonitory to a first-order isosymmetric phase transition which occurs on increasing pressure from 5.34 to 5.54 GPa. Although the phase transition is driven by volume minimization, rather than relief of unfavourable contacts, it is accompanied by a sharp jump in the orientation of the rotation angle of the phenyl group. DFT calculations suggest that the adoption of a more planar conformation by the triazinyl moiety at the phase transition can be attributed to relief of intramolecular H...H contacts at the transition. Although no dimerization of the radicals occurs, the π-stacking interactions are compressed by 0.341 (3) Å between ambient pressure and 6.07 GPa.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Chalcogen Chemistry: Fundamentals and Applications. Edited by Vito Lippolis, Claudio Santi, Eder J. Lenardão and Antonio L. Braga. Royal Society of Chemistry, 2023. Hardcover, pp. 728. Price EUR 156.00. ISBN 978-1-83916-422-4 Synthesis and structure of high-purity BaCe0.25Mn0.75O3: an improved material for thermochemical water splitting Preparation and crystallographic characterization of 1H-tetrazole/NaClO4 energetic cocrystal Evolution of intermolecular contacts with temperature and pressure in bromoethane and iodoethane – a comparative study Design of a series of cocrystals featuring isoniazid modified with diacetone alcohol
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1