基于语言的增强越南语情感分析

C. Manh, Hieu Pham Minh, Hoang Do Van, Khanh Nguyen Quoc, Khanh Nguyen, Manh Tran Van, Anh Phan
{"title":"基于语言的增强越南语情感分析","authors":"C. Manh, Hieu Pham Minh, Hoang Do Van, Khanh Nguyen Quoc, Khanh Nguyen, Manh Tran Van, Anh Phan","doi":"10.1109/RIVF51545.2021.9642123","DOIUrl":null,"url":null,"abstract":"Identify customer’s opinions about products, services, and brands bring many benefits to e-commerce development. Capturing customer attitudes helps retailers adjust business decisions. Customers can select the suitable product and the good service by consulting social experiences. However, free-style texts of customer feedback like acronyms, slang words, incorrect grammar, and so on are challenging any machine learning model.","PeriodicalId":6860,"journal":{"name":"2021 RIVF International Conference on Computing and Communication Technologies (RIVF)","volume":"10 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Linguistic-based Augmentation for Enhancing Vietnamese Sentiment Analysis\",\"authors\":\"C. Manh, Hieu Pham Minh, Hoang Do Van, Khanh Nguyen Quoc, Khanh Nguyen, Manh Tran Van, Anh Phan\",\"doi\":\"10.1109/RIVF51545.2021.9642123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Identify customer’s opinions about products, services, and brands bring many benefits to e-commerce development. Capturing customer attitudes helps retailers adjust business decisions. Customers can select the suitable product and the good service by consulting social experiences. However, free-style texts of customer feedback like acronyms, slang words, incorrect grammar, and so on are challenging any machine learning model.\",\"PeriodicalId\":6860,\"journal\":{\"name\":\"2021 RIVF International Conference on Computing and Communication Technologies (RIVF)\",\"volume\":\"10 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 RIVF International Conference on Computing and Communication Technologies (RIVF)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RIVF51545.2021.9642123\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 RIVF International Conference on Computing and Communication Technologies (RIVF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RIVF51545.2021.9642123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

识别顾客对产品、服务和品牌的看法,给电子商务的发展带来很多好处。捕捉顾客的态度有助于零售商调整商业决策。客户可以通过咨询社会经验来选择合适的产品和良好的服务。然而,诸如首字母缩略词、俚语、错误语法等自由风格的客户反馈文本正在挑战任何机器学习模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Linguistic-based Augmentation for Enhancing Vietnamese Sentiment Analysis
Identify customer’s opinions about products, services, and brands bring many benefits to e-commerce development. Capturing customer attitudes helps retailers adjust business decisions. Customers can select the suitable product and the good service by consulting social experiences. However, free-style texts of customer feedback like acronyms, slang words, incorrect grammar, and so on are challenging any machine learning model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Novel Image Watermarking Scheme Using LU Decomposition Streaming Algorithm for Submodular Cover Problem Under Noise Hand part segmentations in hand mask of egocentric images using Distance Transformation Map and SVM Classifier Multiple Imputation by Generative Adversarial Networks for Classification with Incomplete Data MC-OCR Challenge 2021: Simple approach for receipt information extraction and quality evaluation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1