评估北婆罗洲泥炭沼泽土壤的迁地二氧化碳通量率

Eliza Low Ying Si, M. Chadwick, T. Smith, Rahayu Sukmaria Sukri
{"title":"评估北婆罗洲泥炭沼泽土壤的迁地二氧化碳通量率","authors":"Eliza Low Ying Si, M. Chadwick, T. Smith, Rahayu Sukmaria Sukri","doi":"10.1017/exp.2022.2","DOIUrl":null,"url":null,"abstract":"Abstract This study quantified CO2 emissions from tropical peat swamp soils in Brunei Darussalam. At each site, soil was collected from areas of intact and degraded peat and CO2 flux, and total organic content were measured ex situ. Soil organic content (~20–99%) was not significantly different between intact and degraded forest samples. CO2 flux was higher for intact forest samples than degraded forest samples (~1.0 vs. ~0.6 μmol CO2 m−2 s−1, respectively) but did not differ among forest locations. From our laboratory experiments, we estimated a potential emissions of ~10–20 t CO2 ha−1 y−1 which is in the lower range of values reported for other tropical peat swamps. However, our results are likely affected by unmeasured variation in root respiration and the lability of resident carbon. Overall, these findings provide experimental evidence to support that clearance of tropical peat swamp forests can increase CO2 emissions due to faster rates of decomposition.","PeriodicalId":12269,"journal":{"name":"Experimental Results","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluating ex situ rates of carbon dioxide flux from northern Borneo peat swamp soils\",\"authors\":\"Eliza Low Ying Si, M. Chadwick, T. Smith, Rahayu Sukmaria Sukri\",\"doi\":\"10.1017/exp.2022.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This study quantified CO2 emissions from tropical peat swamp soils in Brunei Darussalam. At each site, soil was collected from areas of intact and degraded peat and CO2 flux, and total organic content were measured ex situ. Soil organic content (~20–99%) was not significantly different between intact and degraded forest samples. CO2 flux was higher for intact forest samples than degraded forest samples (~1.0 vs. ~0.6 μmol CO2 m−2 s−1, respectively) but did not differ among forest locations. From our laboratory experiments, we estimated a potential emissions of ~10–20 t CO2 ha−1 y−1 which is in the lower range of values reported for other tropical peat swamps. However, our results are likely affected by unmeasured variation in root respiration and the lability of resident carbon. Overall, these findings provide experimental evidence to support that clearance of tropical peat swamp forests can increase CO2 emissions due to faster rates of decomposition.\",\"PeriodicalId\":12269,\"journal\":{\"name\":\"Experimental Results\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Results\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/exp.2022.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Results","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/exp.2022.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究量化了文莱达鲁萨兰国热带泥炭沼泽土壤的二氧化碳排放。在每个站点,从完整和退化的泥炭和CO2通量区收集土壤,并测量总有机含量。土壤有机质含量(~20 ~ 99%)在完整和退化森林样品间无显著差异。完整森林样品的CO2通量高于退化森林样品(分别为~1.0 μmol CO2 m−2 s−1和~0.6 μmol CO2 m−2 s−1),但不同地点之间没有差异。从我们的实验室实验中,我们估计了~10 - 20t CO2的潜在排放量,这是在其他热带泥炭沼泽报告值的较低范围内。然而,我们的结果可能受到未测量的根呼吸变化和常驻碳不稳定性的影响。总的来说,这些发现提供了实验证据,支持热带泥炭沼泽森林的砍伐可以增加二氧化碳排放,因为分解速度更快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluating ex situ rates of carbon dioxide flux from northern Borneo peat swamp soils
Abstract This study quantified CO2 emissions from tropical peat swamp soils in Brunei Darussalam. At each site, soil was collected from areas of intact and degraded peat and CO2 flux, and total organic content were measured ex situ. Soil organic content (~20–99%) was not significantly different between intact and degraded forest samples. CO2 flux was higher for intact forest samples than degraded forest samples (~1.0 vs. ~0.6 μmol CO2 m−2 s−1, respectively) but did not differ among forest locations. From our laboratory experiments, we estimated a potential emissions of ~10–20 t CO2 ha−1 y−1 which is in the lower range of values reported for other tropical peat swamps. However, our results are likely affected by unmeasured variation in root respiration and the lability of resident carbon. Overall, these findings provide experimental evidence to support that clearance of tropical peat swamp forests can increase CO2 emissions due to faster rates of decomposition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
0
期刊最新文献
THE COST OF PAEDIATRIC ABDOMINAL TUBERCULOSIS TREATMENT IN INDIA: EVIDENCE FROM A TEACHING HOSPITAL On L-derivatives and biextensions of Calabi–Yau motives Handedness and test anxiety: An examination of mixed-handed and consistent-handed students Analysis of declining trends in sugarcane yield at Wonji-Shoa Sugar Estate, Central Ethiopia Raw driving data of passenger cars considering traffic conditions in Semnan city
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1