A. Balliu, J. Hirvonen, Janne H. Korhonen, Tuomo Lempiäinen, D. Olivetti, J. Suomela
{"title":"分布式时间复杂度的新类别","authors":"A. Balliu, J. Hirvonen, Janne H. Korhonen, Tuomo Lempiäinen, D. Olivetti, J. Suomela","doi":"10.1145/3188745.3188860","DOIUrl":null,"url":null,"abstract":"A number of recent papers – e.g. Brandt et al. (STOC 2016), Chang et al. (FOCS 2016), Ghaffari & Su (SODA 2017), Brandt et al. (PODC 2017), and Chang & Pettie (FOCS 2017) – have advanced our understanding of one of the most fundamental questions in theory of distributed computing: what are the possible time complexity classes of LCL problems in the LOCAL model? In essence, we have a graph problem Π in which a solution can be verified by checking all radius-O(1) neighbourhoods, and the question is what is the smallest T such that a solution can be computed so that each node chooses its own output based on its radius-T neighbourhood. Here T is the distributed time complexity of Π. The time complexity classes for deterministic algorithms in bounded-degree graphs that are known to exist by prior work are Θ(1), Θ(log* n), Θ(logn), Θ(n1/k), and Θ(n). It is also known that there are two gaps: one between ω(1) and o(loglog* n), and another between ω(log* n) and o(logn). It has been conjectured that many more gaps exist, and that the overall time hierarchy is relatively simple – indeed, this is known to be the case in restricted graph families such as cycles and grids. We show that the picture is much more diverse than previously expected. We present a general technique for engineering LCL problems with numerous different deterministic time complexities, including Θ(logα n) for any α ≥ 1, 2Θ(logα n) for any α ≤ 1, and Θ(nα) for any α < 1/2 in the high end of the complexity spectrum, and Θ(logα log* n) for any α ≥ 1, 2Θ(logα log* n) for any α ≤ 1, and Θ((log* n)α) for any α ≤ 1 in the low end of the complexity spectrum; here α is a positive rational number.","PeriodicalId":20593,"journal":{"name":"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing","volume":"52 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":"{\"title\":\"New classes of distributed time complexity\",\"authors\":\"A. Balliu, J. Hirvonen, Janne H. Korhonen, Tuomo Lempiäinen, D. Olivetti, J. Suomela\",\"doi\":\"10.1145/3188745.3188860\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A number of recent papers – e.g. Brandt et al. (STOC 2016), Chang et al. (FOCS 2016), Ghaffari & Su (SODA 2017), Brandt et al. (PODC 2017), and Chang & Pettie (FOCS 2017) – have advanced our understanding of one of the most fundamental questions in theory of distributed computing: what are the possible time complexity classes of LCL problems in the LOCAL model? In essence, we have a graph problem Π in which a solution can be verified by checking all radius-O(1) neighbourhoods, and the question is what is the smallest T such that a solution can be computed so that each node chooses its own output based on its radius-T neighbourhood. Here T is the distributed time complexity of Π. The time complexity classes for deterministic algorithms in bounded-degree graphs that are known to exist by prior work are Θ(1), Θ(log* n), Θ(logn), Θ(n1/k), and Θ(n). It is also known that there are two gaps: one between ω(1) and o(loglog* n), and another between ω(log* n) and o(logn). It has been conjectured that many more gaps exist, and that the overall time hierarchy is relatively simple – indeed, this is known to be the case in restricted graph families such as cycles and grids. We show that the picture is much more diverse than previously expected. We present a general technique for engineering LCL problems with numerous different deterministic time complexities, including Θ(logα n) for any α ≥ 1, 2Θ(logα n) for any α ≤ 1, and Θ(nα) for any α < 1/2 in the high end of the complexity spectrum, and Θ(logα log* n) for any α ≥ 1, 2Θ(logα log* n) for any α ≤ 1, and Θ((log* n)α) for any α ≤ 1 in the low end of the complexity spectrum; here α is a positive rational number.\",\"PeriodicalId\":20593,\"journal\":{\"name\":\"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"44\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3188745.3188860\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3188745.3188860","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A number of recent papers – e.g. Brandt et al. (STOC 2016), Chang et al. (FOCS 2016), Ghaffari & Su (SODA 2017), Brandt et al. (PODC 2017), and Chang & Pettie (FOCS 2017) – have advanced our understanding of one of the most fundamental questions in theory of distributed computing: what are the possible time complexity classes of LCL problems in the LOCAL model? In essence, we have a graph problem Π in which a solution can be verified by checking all radius-O(1) neighbourhoods, and the question is what is the smallest T such that a solution can be computed so that each node chooses its own output based on its radius-T neighbourhood. Here T is the distributed time complexity of Π. The time complexity classes for deterministic algorithms in bounded-degree graphs that are known to exist by prior work are Θ(1), Θ(log* n), Θ(logn), Θ(n1/k), and Θ(n). It is also known that there are two gaps: one between ω(1) and o(loglog* n), and another between ω(log* n) and o(logn). It has been conjectured that many more gaps exist, and that the overall time hierarchy is relatively simple – indeed, this is known to be the case in restricted graph families such as cycles and grids. We show that the picture is much more diverse than previously expected. We present a general technique for engineering LCL problems with numerous different deterministic time complexities, including Θ(logα n) for any α ≥ 1, 2Θ(logα n) for any α ≤ 1, and Θ(nα) for any α < 1/2 in the high end of the complexity spectrum, and Θ(logα log* n) for any α ≥ 1, 2Θ(logα log* n) for any α ≤ 1, and Θ((log* n)α) for any α ≤ 1 in the low end of the complexity spectrum; here α is a positive rational number.