{"title":"这一切都与相位有关:超快全息光电子成像","authors":"C. Figueira de Morisson Faria, A. Maxwell","doi":"10.1088/1361-6633/ab5c91","DOIUrl":null,"url":null,"abstract":"Photoelectron holography constitutes a powerful tool for the ultrafast imaging of matter, as it combines high electron currents with subfemtosecond resolution, and gives information about transition amplitudes and phase shifts. Similarly to light holography, it uses the phase difference between the probe and the reference waves associated with qualitatively different ionization events for the reconstruction of the target and for ascertaining any changes that may occur. These are major advantages over other attosecond imaging techniques, which require elaborate interferometric schemes in order to extract phase differences. For that reason, ultrafast photoelectron holography has experienced a huge growth in activity, which has led to a vast, but fragmented landscape. The present review is an organizational effort towards unifying this landscape. This includes a historic account in which a connection with laser-induced electron diffraction is established, a summary of the main holographic structures encountered and their underlying physical mechanisms, a broad discussion of the theoretical methods employed, and of the key challenges and future possibilities. We delve deeper in our own work, and place a strong emphasis on quantum interference, and on the residual Coulomb potential.","PeriodicalId":21110,"journal":{"name":"Reports on Progress in Physics","volume":null,"pages":null},"PeriodicalIF":19.0000,"publicationDate":"2019-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"66","resultStr":"{\"title\":\"It is all about phases: ultrafast holographic photoelectron imaging\",\"authors\":\"C. Figueira de Morisson Faria, A. Maxwell\",\"doi\":\"10.1088/1361-6633/ab5c91\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Photoelectron holography constitutes a powerful tool for the ultrafast imaging of matter, as it combines high electron currents with subfemtosecond resolution, and gives information about transition amplitudes and phase shifts. Similarly to light holography, it uses the phase difference between the probe and the reference waves associated with qualitatively different ionization events for the reconstruction of the target and for ascertaining any changes that may occur. These are major advantages over other attosecond imaging techniques, which require elaborate interferometric schemes in order to extract phase differences. For that reason, ultrafast photoelectron holography has experienced a huge growth in activity, which has led to a vast, but fragmented landscape. The present review is an organizational effort towards unifying this landscape. This includes a historic account in which a connection with laser-induced electron diffraction is established, a summary of the main holographic structures encountered and their underlying physical mechanisms, a broad discussion of the theoretical methods employed, and of the key challenges and future possibilities. We delve deeper in our own work, and place a strong emphasis on quantum interference, and on the residual Coulomb potential.\",\"PeriodicalId\":21110,\"journal\":{\"name\":\"Reports on Progress in Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":19.0000,\"publicationDate\":\"2019-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"66\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reports on Progress in Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6633/ab5c91\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reports on Progress in Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6633/ab5c91","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
It is all about phases: ultrafast holographic photoelectron imaging
Photoelectron holography constitutes a powerful tool for the ultrafast imaging of matter, as it combines high electron currents with subfemtosecond resolution, and gives information about transition amplitudes and phase shifts. Similarly to light holography, it uses the phase difference between the probe and the reference waves associated with qualitatively different ionization events for the reconstruction of the target and for ascertaining any changes that may occur. These are major advantages over other attosecond imaging techniques, which require elaborate interferometric schemes in order to extract phase differences. For that reason, ultrafast photoelectron holography has experienced a huge growth in activity, which has led to a vast, but fragmented landscape. The present review is an organizational effort towards unifying this landscape. This includes a historic account in which a connection with laser-induced electron diffraction is established, a summary of the main holographic structures encountered and their underlying physical mechanisms, a broad discussion of the theoretical methods employed, and of the key challenges and future possibilities. We delve deeper in our own work, and place a strong emphasis on quantum interference, and on the residual Coulomb potential.
期刊介绍:
Reports on Progress in Physics is a highly selective journal with a mission to publish ground-breaking new research and authoritative invited reviews of the highest quality and significance across all areas of physics and related areas. Articles must be essential reading for specialists, and likely to be of broader multidisciplinary interest with the expectation for long-term scientific impact and influence on the current state and/or future direction of a field.