双腔间歇微生物燃料电池(MFC)动态稳定模型的建立

A. Harimawan
{"title":"双腔间歇微生物燃料电池(MFC)动态稳定模型的建立","authors":"A. Harimawan","doi":"10.14710/reaktor.1.1.160-169","DOIUrl":null,"url":null,"abstract":"As an alternative source of renewable energy that has piqued researchers’ interest, Microbial Fuel Cell’s (MFC) limitation of low power density requires further development. Various factors affect the performance, but performing all will be costly and time-consuming. Through a combination of dynamic and steady-state mathematical model modified from past research, effect of microbe types towards dynamic biofilm formation and stead-state OCV can be observed, followed by steady-state simulation to determine maximum power density and its’ corresponding voltage. Similarity with previous research has been observed, with maximum OCV of 838.93 mV achieved by heterotrophic biomass in 75-100 hours with biofilm thickness of 2.087 x 10-4 m, while generating maximum power density of 2050.12 mW//m2 and voltage of 408.16 mV. Lowest OCV value of 838.76 mV was observed in C. sporogenes in 450-475 hours with a biofilm thickness of 2.079 x 10-4 m, while the lowest value of maximum power density was observed in anaerobic microbial communities at 8.48 mW/m2 with voltage of 90.43 mV. Furthermore, it has been observed that variations with higher  and lower  results in higher stead-state OCV in the shortest amount of time, while increasing power density and its’ corresponding voltage. @font-face {font-family:\"Cambria Math\"; panose-1:2 4 5 3 5 4 6 3 2 4; mso-font-charset:0; mso-generic-font-family:roman; mso-font-pitch:variable; mso-font-signature:-536869121 1107305727 33554432 0 415 0;}@font-face {font-family:Calibri; panose-1:2 15 5 2 2 2 4 3 2 4; mso-font-charset:0; mso-generic-font-family:swiss; mso-font-pitch:variable; mso-font-signature:-469750017 -1073732485 9 0 511 0;}p.MsoNormal, li.MsoNormal, div.MsoNormal {mso-style-unhide:no; mso-style-qformat:yes; mso-style-parent:\"\"; margin:0cm; mso-pagination:widow-orphan; font-size:12.0pt; font-family:\"Times New Roman\",serif; mso-fareast-font-family:\"Times New Roman\"; mso-ansi-language:EN-US;}.MsoChpDefault {mso-style-type:export-only; mso-default-props:yes; font-size:10.0pt; mso-ansi-font-size:10.0pt; mso-bidi-font-size:10.0pt; font-family:\"Calibri\",sans-serif; mso-ascii-font-family:Calibri; mso-fareast-font-family:Calibri; mso-hansi-font-family:Calibri; mso-ansi-language:IN; mso-fareast-language:IN;}div.WordSection1 {page:WordSection1;}","PeriodicalId":20874,"journal":{"name":"Reaktor","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic and Steady Model Development of Two-Chamber Batch Microbial Fuel Cell (MFC)\",\"authors\":\"A. Harimawan\",\"doi\":\"10.14710/reaktor.1.1.160-169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As an alternative source of renewable energy that has piqued researchers’ interest, Microbial Fuel Cell’s (MFC) limitation of low power density requires further development. Various factors affect the performance, but performing all will be costly and time-consuming. Through a combination of dynamic and steady-state mathematical model modified from past research, effect of microbe types towards dynamic biofilm formation and stead-state OCV can be observed, followed by steady-state simulation to determine maximum power density and its’ corresponding voltage. Similarity with previous research has been observed, with maximum OCV of 838.93 mV achieved by heterotrophic biomass in 75-100 hours with biofilm thickness of 2.087 x 10-4 m, while generating maximum power density of 2050.12 mW//m2 and voltage of 408.16 mV. Lowest OCV value of 838.76 mV was observed in C. sporogenes in 450-475 hours with a biofilm thickness of 2.079 x 10-4 m, while the lowest value of maximum power density was observed in anaerobic microbial communities at 8.48 mW/m2 with voltage of 90.43 mV. Furthermore, it has been observed that variations with higher  and lower  results in higher stead-state OCV in the shortest amount of time, while increasing power density and its’ corresponding voltage. @font-face {font-family:\\\"Cambria Math\\\"; panose-1:2 4 5 3 5 4 6 3 2 4; mso-font-charset:0; mso-generic-font-family:roman; mso-font-pitch:variable; mso-font-signature:-536869121 1107305727 33554432 0 415 0;}@font-face {font-family:Calibri; panose-1:2 15 5 2 2 2 4 3 2 4; mso-font-charset:0; mso-generic-font-family:swiss; mso-font-pitch:variable; mso-font-signature:-469750017 -1073732485 9 0 511 0;}p.MsoNormal, li.MsoNormal, div.MsoNormal {mso-style-unhide:no; mso-style-qformat:yes; mso-style-parent:\\\"\\\"; margin:0cm; mso-pagination:widow-orphan; font-size:12.0pt; font-family:\\\"Times New Roman\\\",serif; mso-fareast-font-family:\\\"Times New Roman\\\"; mso-ansi-language:EN-US;}.MsoChpDefault {mso-style-type:export-only; mso-default-props:yes; font-size:10.0pt; mso-ansi-font-size:10.0pt; mso-bidi-font-size:10.0pt; font-family:\\\"Calibri\\\",sans-serif; mso-ascii-font-family:Calibri; mso-fareast-font-family:Calibri; mso-hansi-font-family:Calibri; mso-ansi-language:IN; mso-fareast-language:IN;}div.WordSection1 {page:WordSection1;}\",\"PeriodicalId\":20874,\"journal\":{\"name\":\"Reaktor\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reaktor\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14710/reaktor.1.1.160-169\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reaktor","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14710/reaktor.1.1.160-169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

作为一种可再生能源,微生物燃料电池(MFC)的低功率密度限制需要进一步发展,这引起了研究人员的兴趣。影响性能的因素有很多,但所有因素的执行都将是昂贵且耗时的。通过对以往研究改进的动态与稳态数学模型相结合,观察微生物类型对动态生物膜形成和稳态OCV的影响,并进行稳态模拟,确定最大功率密度及其对应电压。与前人研究结果相似,异养生物量在75 ~ 100小时内,生物膜厚度为2.087 × 10-4 m,最大OCV为838.93 mV,最大功率密度为2050.12 mW//m2,电压为408.16 mV。在450h ~ 475 h,产孢梭菌生物膜厚度为2.079 × 10-4 m时,OCV值最低,为838.76 mV;在8.48 mW/m2,电压为90.43 mV时,厌氧微生物群落的最大功率密度最低。此外,我们还观察到,高和低的变化会在最短的时间内产生较高的稳态OCV,同时增加功率密度及其相应的电压。@font-face {font-family:"剑桥数学";Panose-1:2 4 5 3 5 4 6 3 2 4 4;mso-font-charset: 0;mso-generic-font-family:罗马;mso-font-pitch:变量;mso-font-signature:-536869121 1107305727 33554432 0;潘诺斯-1:2 15 5 2 2 2 2 4 3 2 4;mso-font-charset: 0;mso-generic-font-family:瑞士;mso-font-pitch:变量;Mso-font-signature:-469750017 -1073732485 9 0 511 0;MsoNormal,李。msonnormal, div. msonnormal {mso-style-unhide:no;mso-style-qformat:是的;mso-style-parent:“”;保证金:0厘米;mso-pagination: widow-orphan;字体大小:12.0分;font-family:宋体;mso-fareast-font-family:宋体;mso-ansi-language: en - us;}。MsoChpDefault {mso-style-type:仅供出口的;mso-default-props:是的;字体大小:10.0分;mso-ansi-font-size: 10.0分;mso-bidi-font-size: 10.0分;无衬线字体类型:“Calibri”;mso-ascii-font-family: Calibri;mso-fareast-font-family: Calibri;mso-hansi-font-family: Calibri;mso-ansi-language:;mso-fareast-language:;} div。WordSection1{页面:WordSection1;}
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dynamic and Steady Model Development of Two-Chamber Batch Microbial Fuel Cell (MFC)
As an alternative source of renewable energy that has piqued researchers’ interest, Microbial Fuel Cell’s (MFC) limitation of low power density requires further development. Various factors affect the performance, but performing all will be costly and time-consuming. Through a combination of dynamic and steady-state mathematical model modified from past research, effect of microbe types towards dynamic biofilm formation and stead-state OCV can be observed, followed by steady-state simulation to determine maximum power density and its’ corresponding voltage. Similarity with previous research has been observed, with maximum OCV of 838.93 mV achieved by heterotrophic biomass in 75-100 hours with biofilm thickness of 2.087 x 10-4 m, while generating maximum power density of 2050.12 mW//m2 and voltage of 408.16 mV. Lowest OCV value of 838.76 mV was observed in C. sporogenes in 450-475 hours with a biofilm thickness of 2.079 x 10-4 m, while the lowest value of maximum power density was observed in anaerobic microbial communities at 8.48 mW/m2 with voltage of 90.43 mV. Furthermore, it has been observed that variations with higher  and lower  results in higher stead-state OCV in the shortest amount of time, while increasing power density and its’ corresponding voltage. @font-face {font-family:"Cambria Math"; panose-1:2 4 5 3 5 4 6 3 2 4; mso-font-charset:0; mso-generic-font-family:roman; mso-font-pitch:variable; mso-font-signature:-536869121 1107305727 33554432 0 415 0;}@font-face {font-family:Calibri; panose-1:2 15 5 2 2 2 4 3 2 4; mso-font-charset:0; mso-generic-font-family:swiss; mso-font-pitch:variable; mso-font-signature:-469750017 -1073732485 9 0 511 0;}p.MsoNormal, li.MsoNormal, div.MsoNormal {mso-style-unhide:no; mso-style-qformat:yes; mso-style-parent:""; margin:0cm; mso-pagination:widow-orphan; font-size:12.0pt; font-family:"Times New Roman",serif; mso-fareast-font-family:"Times New Roman"; mso-ansi-language:EN-US;}.MsoChpDefault {mso-style-type:export-only; mso-default-props:yes; font-size:10.0pt; mso-ansi-font-size:10.0pt; mso-bidi-font-size:10.0pt; font-family:"Calibri",sans-serif; mso-ascii-font-family:Calibri; mso-fareast-font-family:Calibri; mso-hansi-font-family:Calibri; mso-ansi-language:IN; mso-fareast-language:IN;}div.WordSection1 {page:WordSection1;}
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
15
审稿时长
2 weeks
期刊最新文献
The Effect of Drying on Anthocyanin Content and Antioxidant Activity in Red Cabbage and White Cabbage KINETICS OF ADSORPTION OF HEAVY METALS (IRON) FROM TEXTILE INDUSTRY WASTE USING CALCIUM CARBIDE RESIDUE AS ADSORBENT Lactic acid fermentation of banana peel using Lactobacillus plantarum : Effect of substrate concentration, inoculum concentration, and various nitrogen sources Edible Film Modification Based-on Mucuna Pruriens with Crosslink Method Incorporated with Gelatin, Sodium Alginate, and Green Tea Extract Self-Discharging and Corrosion Problems in Vanadium Redox Flow Battery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1