G. S. Sánchez Guerrero, P. V. Viera González, Edgar Martinez Guerra, K. Acuña Askar, Rodolfo Cortés Martínez
{"title":"用于家庭污水监测的等离子体传感器","authors":"G. S. Sánchez Guerrero, P. V. Viera González, Edgar Martinez Guerra, K. Acuña Askar, Rodolfo Cortés Martínez","doi":"10.1117/12.2676086","DOIUrl":null,"url":null,"abstract":"Wastewater quality monitoring is essential as an effective pandemic management tool. Domestic water is one of the leading causes of wastewater pollution. Domestic water originates from urban centers and contains substances from human activity consisting of organic matter such as food remains, feces, oils, detergents, and soaps. Different ways of sensing are used to maintain the water quality, like pH, conductivity, and turbidity sensors. Alternative methods are optical sensors because these offer great potential for wastewater monitoring, allowing massive, easy and low-cost acquisitions of a wide range of measures in real-time, at any flow conditions, and with high spatial resolution. Plasmonic sensors are optical sensors used for detection, which could realize rapid recognition, real-time analysis, and sensitive and selecting sensing. These devices exploit the interaction of light with matter using the SPR as a method based on the optoelectronic phenomenon. When light hits a metal surface (typically a gold surface) at a certain angle, part of the light energy pairs through the metal coating with the electrons in the metal surface layer, which then move due to excitation, called surface plasmon resonance. We use the Kretschmann configuration and the matrix transfer method to analyze the performance numerically to achieve the optime parameters of design for the sensor’s performance. In this work, we design and build a plasmonic sensor for house wastewater monitoring by tracking contaminants along a continuous flow of artisanal water.","PeriodicalId":13820,"journal":{"name":"International Conference on Nanoscience, Engineering and Technology (ICONSET 2011)","volume":"11 1","pages":"126480A - 126480A-6"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Plasmonic sensor for house wastewater monitoring\",\"authors\":\"G. S. Sánchez Guerrero, P. V. Viera González, Edgar Martinez Guerra, K. Acuña Askar, Rodolfo Cortés Martínez\",\"doi\":\"10.1117/12.2676086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wastewater quality monitoring is essential as an effective pandemic management tool. Domestic water is one of the leading causes of wastewater pollution. Domestic water originates from urban centers and contains substances from human activity consisting of organic matter such as food remains, feces, oils, detergents, and soaps. Different ways of sensing are used to maintain the water quality, like pH, conductivity, and turbidity sensors. Alternative methods are optical sensors because these offer great potential for wastewater monitoring, allowing massive, easy and low-cost acquisitions of a wide range of measures in real-time, at any flow conditions, and with high spatial resolution. Plasmonic sensors are optical sensors used for detection, which could realize rapid recognition, real-time analysis, and sensitive and selecting sensing. These devices exploit the interaction of light with matter using the SPR as a method based on the optoelectronic phenomenon. When light hits a metal surface (typically a gold surface) at a certain angle, part of the light energy pairs through the metal coating with the electrons in the metal surface layer, which then move due to excitation, called surface plasmon resonance. We use the Kretschmann configuration and the matrix transfer method to analyze the performance numerically to achieve the optime parameters of design for the sensor’s performance. In this work, we design and build a plasmonic sensor for house wastewater monitoring by tracking contaminants along a continuous flow of artisanal water.\",\"PeriodicalId\":13820,\"journal\":{\"name\":\"International Conference on Nanoscience, Engineering and Technology (ICONSET 2011)\",\"volume\":\"11 1\",\"pages\":\"126480A - 126480A-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Nanoscience, Engineering and Technology (ICONSET 2011)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2676086\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Nanoscience, Engineering and Technology (ICONSET 2011)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2676086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Wastewater quality monitoring is essential as an effective pandemic management tool. Domestic water is one of the leading causes of wastewater pollution. Domestic water originates from urban centers and contains substances from human activity consisting of organic matter such as food remains, feces, oils, detergents, and soaps. Different ways of sensing are used to maintain the water quality, like pH, conductivity, and turbidity sensors. Alternative methods are optical sensors because these offer great potential for wastewater monitoring, allowing massive, easy and low-cost acquisitions of a wide range of measures in real-time, at any flow conditions, and with high spatial resolution. Plasmonic sensors are optical sensors used for detection, which could realize rapid recognition, real-time analysis, and sensitive and selecting sensing. These devices exploit the interaction of light with matter using the SPR as a method based on the optoelectronic phenomenon. When light hits a metal surface (typically a gold surface) at a certain angle, part of the light energy pairs through the metal coating with the electrons in the metal surface layer, which then move due to excitation, called surface plasmon resonance. We use the Kretschmann configuration and the matrix transfer method to analyze the performance numerically to achieve the optime parameters of design for the sensor’s performance. In this work, we design and build a plasmonic sensor for house wastewater monitoring by tracking contaminants along a continuous flow of artisanal water.