碳-碳组成“膨胀石墨-多壁碳纳米管”

S. Yurii, Grebel’na Yulia, Strelchuk Victor, Dovbeshko Galyna, Zhuravskyi Serhii, Makhno Stanislav, W. Bo, Kartel Mykola
{"title":"碳-碳组成“膨胀石墨-多壁碳纳米管”","authors":"S. Yurii, Grebel’na Yulia, Strelchuk Victor, Dovbeshko Galyna, Zhuravskyi Serhii, Makhno Stanislav, W. Bo, Kartel Mykola","doi":"10.11648/J.IJMSA.20190806.16","DOIUrl":null,"url":null,"abstract":"It is given the description of expanded graphite (EG) as a cluster-assembled nanoscale system. It is shown that in the structure of EG there are both extended defects formed by the convolution of one or more graphene layers and orientation defects - disclination. The strength characteristics of EG compacted materials can be controlled by changing the parameters of the production process in a limited interval (the ratio of the amount of oxidizing agent, intercalant, with natural dispersed graphite, its particle size). The procedure for treating multiwalled carbon nanotubes (MW CNTs) with a solution of potassium dichromate in sulfuric acid was carried out according to the known technology of oxidation of natural graphite in order to obtain expandable graphite. It provides for the use of sulfuric acid as an intercalating agent and potassium dichromate (K2Cr2O7) as an oxidizing agent. The aqueous dispersion of oxidized MW CNTs is stable over time: the average particle size is 50 nm; two fractions - from 20 to 100 nm, amount - 99.9%, mass - 10%; from 250 to 500 nm and amount of 0.1%, mass - 90%; high polydispersity ranges from 0.35-0.4, that is, the particles are quite close to the spherical shape. Modification of CNTs by oxygen simultaneously with anodic oxidation of natural dispersed graphite allowed for the first time to create a carbon-carbon composite \"EG – MW CNTs\" with enhanced physical and mechanical characteristics without additional use of binders.","PeriodicalId":14116,"journal":{"name":"International Journal of Materials Science and Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Carbon-Carbon Composition “Expanded Graphite – Multiwalled Carbon Nanotubes”\",\"authors\":\"S. Yurii, Grebel’na Yulia, Strelchuk Victor, Dovbeshko Galyna, Zhuravskyi Serhii, Makhno Stanislav, W. Bo, Kartel Mykola\",\"doi\":\"10.11648/J.IJMSA.20190806.16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is given the description of expanded graphite (EG) as a cluster-assembled nanoscale system. It is shown that in the structure of EG there are both extended defects formed by the convolution of one or more graphene layers and orientation defects - disclination. The strength characteristics of EG compacted materials can be controlled by changing the parameters of the production process in a limited interval (the ratio of the amount of oxidizing agent, intercalant, with natural dispersed graphite, its particle size). The procedure for treating multiwalled carbon nanotubes (MW CNTs) with a solution of potassium dichromate in sulfuric acid was carried out according to the known technology of oxidation of natural graphite in order to obtain expandable graphite. It provides for the use of sulfuric acid as an intercalating agent and potassium dichromate (K2Cr2O7) as an oxidizing agent. The aqueous dispersion of oxidized MW CNTs is stable over time: the average particle size is 50 nm; two fractions - from 20 to 100 nm, amount - 99.9%, mass - 10%; from 250 to 500 nm and amount of 0.1%, mass - 90%; high polydispersity ranges from 0.35-0.4, that is, the particles are quite close to the spherical shape. Modification of CNTs by oxygen simultaneously with anodic oxidation of natural dispersed graphite allowed for the first time to create a carbon-carbon composite \\\"EG – MW CNTs\\\" with enhanced physical and mechanical characteristics without additional use of binders.\",\"PeriodicalId\":14116,\"journal\":{\"name\":\"International Journal of Materials Science and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Materials Science and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/J.IJMSA.20190806.16\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Materials Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.IJMSA.20190806.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

将膨胀石墨(EG)描述为团簇组装的纳米级体系。结果表明,石墨烯的结构中既存在由一个或多个石墨烯层的卷积形成的扩展缺陷,也存在取向缺陷——偏斜。EG压实材料的强度特性可以通过在有限的时间间隔内改变生产工艺的参数来控制(氧化剂、插剂的用量、与天然分散石墨的配比、其粒度)。采用已知的天然石墨氧化工艺,用重铬酸钾溶液处理多壁碳纳米管(MW CNTs),得到可膨胀石墨。它规定使用硫酸作为插层剂和重铬酸钾(K2Cr2O7)作为氧化剂。氧化的MW碳纳米管的水分散随着时间的推移是稳定的:平均粒径为50 nm;两个馏分- 20 ~ 100 nm,量- 99.9%,质量- 10%;250 ~ 500 nm,用量0.1%,质量- 90%;高多分散性范围为0.35-0.4,即颗粒非常接近球形。在对天然分散石墨进行阳极氧化的同时对碳纳米管进行氧改性,首次制备出具有增强物理和机械特性的碳-碳复合材料“EG - MW碳纳米管”,而无需额外使用粘合剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Carbon-Carbon Composition “Expanded Graphite – Multiwalled Carbon Nanotubes”
It is given the description of expanded graphite (EG) as a cluster-assembled nanoscale system. It is shown that in the structure of EG there are both extended defects formed by the convolution of one or more graphene layers and orientation defects - disclination. The strength characteristics of EG compacted materials can be controlled by changing the parameters of the production process in a limited interval (the ratio of the amount of oxidizing agent, intercalant, with natural dispersed graphite, its particle size). The procedure for treating multiwalled carbon nanotubes (MW CNTs) with a solution of potassium dichromate in sulfuric acid was carried out according to the known technology of oxidation of natural graphite in order to obtain expandable graphite. It provides for the use of sulfuric acid as an intercalating agent and potassium dichromate (K2Cr2O7) as an oxidizing agent. The aqueous dispersion of oxidized MW CNTs is stable over time: the average particle size is 50 nm; two fractions - from 20 to 100 nm, amount - 99.9%, mass - 10%; from 250 to 500 nm and amount of 0.1%, mass - 90%; high polydispersity ranges from 0.35-0.4, that is, the particles are quite close to the spherical shape. Modification of CNTs by oxygen simultaneously with anodic oxidation of natural dispersed graphite allowed for the first time to create a carbon-carbon composite "EG – MW CNTs" with enhanced physical and mechanical characteristics without additional use of binders.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Graphene Oxide Nanocarriers for Effective Drug Delivery in Breast Cancer Treatment Thermal Insulation of “akassa” Hot Preservation Baskets Using Cow Dung Coatings Review on Fundamental Considerations During Lignocellulosic Fiber Characterization in Light Micromechanical Analysis of Their Composites Surface Modification of Ti-6Al-4V Alloy by Polycaprolactone-Graphene Oxide Composite Coating Dielectric Relaxation, Electric Conductivity and Thermodynamic Studies on Epoxy Polyurethane Blend and Their Composites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1