用软计算和统计方法预测岩石抗拉强度

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2023-05-16 DOI:10.3311/ppci.22179
Jinhuo Zheng, Minglong Shen, M. Motahari, M. Khajehzadeh
{"title":"用软计算和统计方法预测岩石抗拉强度","authors":"Jinhuo Zheng, Minglong Shen, M. Motahari, M. Khajehzadeh","doi":"10.3311/ppci.22179","DOIUrl":null,"url":null,"abstract":"The tensile strength of the rocks is one of the effective factors in the rupture of structure foundations and underground spaces, the stability of rocky slopes, and the ability to drill and explode in rocks. This research was conducted to estimate tensile strength using methods such as simple regression (SR), multivariate linear regression (MVLR), support vector regression (SVR) with radial basis kernel function, multilayer feed-forward artificial neural network (MFF-ANN), Gaussian process regression (GPR) using squared exponential kernel (SEK) function, and adaptive neuro-fuzzy inference system (ANFIS) based on Gaussian membership function. For this purpose, petrography, and engineering features of the limestone, sandstone, and argillaceous limestone samples in the south of Iran, were assessed. The results obtained from this study were compared with those of previous research, revealing a strong correlation (R2=0.95 to 1.00) between our findings and the published works. To estimate Brazilian tensile strength (BTS), the index properties including water absorption by weight, point load index (PLI), porosity%, P-wave velocity (Vp), and density were considered as inputs. Methods were compared using various criteria. The SVR precision (R=0.96) was higher than MFF-ANN (R=0.92), ANFIS (R=0.95), GPR (R=0.945), and MVLR (R=0.89) to estimate the tensile strength. The average BTS measured in the laboratory and predicted by all 5 methods is 6.62 and 6.71 MPa, respectively, which shows the very high precision of the investigated methods. Analysis of model criteria using statistical analysis for developed relationships revealed that there is sufficient accuracy to use the empirical equations.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of Rock Tensile Strength Using Soft Computing and Statistical Methods\",\"authors\":\"Jinhuo Zheng, Minglong Shen, M. Motahari, M. Khajehzadeh\",\"doi\":\"10.3311/ppci.22179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The tensile strength of the rocks is one of the effective factors in the rupture of structure foundations and underground spaces, the stability of rocky slopes, and the ability to drill and explode in rocks. This research was conducted to estimate tensile strength using methods such as simple regression (SR), multivariate linear regression (MVLR), support vector regression (SVR) with radial basis kernel function, multilayer feed-forward artificial neural network (MFF-ANN), Gaussian process regression (GPR) using squared exponential kernel (SEK) function, and adaptive neuro-fuzzy inference system (ANFIS) based on Gaussian membership function. For this purpose, petrography, and engineering features of the limestone, sandstone, and argillaceous limestone samples in the south of Iran, were assessed. The results obtained from this study were compared with those of previous research, revealing a strong correlation (R2=0.95 to 1.00) between our findings and the published works. To estimate Brazilian tensile strength (BTS), the index properties including water absorption by weight, point load index (PLI), porosity%, P-wave velocity (Vp), and density were considered as inputs. Methods were compared using various criteria. The SVR precision (R=0.96) was higher than MFF-ANN (R=0.92), ANFIS (R=0.95), GPR (R=0.945), and MVLR (R=0.89) to estimate the tensile strength. The average BTS measured in the laboratory and predicted by all 5 methods is 6.62 and 6.71 MPa, respectively, which shows the very high precision of the investigated methods. Analysis of model criteria using statistical analysis for developed relationships revealed that there is sufficient accuracy to use the empirical equations.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3311/ppci.22179\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3311/ppci.22179","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

岩石的抗拉强度是影响结构基础和地下空间破裂、岩质边坡稳定性和岩石钻爆能力的有效因素之一。本研究采用简单回归(SR)、多元线性回归(MVLR)、径向基核函数支持向量回归(SVR)、多层前馈人工神经网络(MFF-ANN)、平方指数核函数高斯过程回归(GPR)和基于高斯隶属函数的自适应神经模糊推理系统(ANFIS)等方法对抗拉强度进行估计。为此,对伊朗南部的石灰岩、砂岩和泥质石灰岩样品的岩石学和工程特征进行了评估。将本研究的结果与前人的研究结果进行比较,发现我们的研究结果与已发表的作品具有很强的相关性(R2=0.95 ~ 1.00)。为了估计巴西抗拉强度(BTS),将吸水率(重量)、点载荷指数(PLI)、孔隙率%、纵波速度(Vp)和密度等指标属性作为输入。方法采用各种标准进行比较。该方法对抗拉强度的SVR精度(R=0.96)高于MFF-ANN (R=0.92)、ANFIS (R=0.95)、GPR (R=0.945)和MVLR (R=0.89)。5种方法的实验室实测和预测的平均BTS分别为6.62和6.71 MPa,表明所研究方法具有很高的精度。利用统计分析对发展关系的模型准则进行分析,表明使用经验方程具有足够的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prediction of Rock Tensile Strength Using Soft Computing and Statistical Methods
The tensile strength of the rocks is one of the effective factors in the rupture of structure foundations and underground spaces, the stability of rocky slopes, and the ability to drill and explode in rocks. This research was conducted to estimate tensile strength using methods such as simple regression (SR), multivariate linear regression (MVLR), support vector regression (SVR) with radial basis kernel function, multilayer feed-forward artificial neural network (MFF-ANN), Gaussian process regression (GPR) using squared exponential kernel (SEK) function, and adaptive neuro-fuzzy inference system (ANFIS) based on Gaussian membership function. For this purpose, petrography, and engineering features of the limestone, sandstone, and argillaceous limestone samples in the south of Iran, were assessed. The results obtained from this study were compared with those of previous research, revealing a strong correlation (R2=0.95 to 1.00) between our findings and the published works. To estimate Brazilian tensile strength (BTS), the index properties including water absorption by weight, point load index (PLI), porosity%, P-wave velocity (Vp), and density were considered as inputs. Methods were compared using various criteria. The SVR precision (R=0.96) was higher than MFF-ANN (R=0.92), ANFIS (R=0.95), GPR (R=0.945), and MVLR (R=0.89) to estimate the tensile strength. The average BTS measured in the laboratory and predicted by all 5 methods is 6.62 and 6.71 MPa, respectively, which shows the very high precision of the investigated methods. Analysis of model criteria using statistical analysis for developed relationships revealed that there is sufficient accuracy to use the empirical equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1