基于自适应系数调整的EMD去噪算法

A. S. Voznesenskiy, D. Kaplun, S. Romanov, V. Gulvanskii, D. Klionskiy
{"title":"基于自适应系数调整的EMD去噪算法","authors":"A. S. Voznesenskiy, D. Kaplun, S. Romanov, V. Gulvanskii, D. Klionskiy","doi":"10.1109/EICONRUS.2019.8657203","DOIUrl":null,"url":null,"abstract":"This paper deals with the denoising algorithm based on EMD with adaptive adjustment of the coefficients depending on the noise level. It is compared with the known denoising algorithms based on EMD, wavelets and Wiener filter. The evaluation of the filtration quality was performed. Synthetic signals of a complex non-stationary structure are used as initial data.","PeriodicalId":6748,"journal":{"name":"2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus)","volume":"13 1","pages":"1240-1243"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Denoising Algorithm Based on EMD with Adaptive Adjustment of Coefficients\",\"authors\":\"A. S. Voznesenskiy, D. Kaplun, S. Romanov, V. Gulvanskii, D. Klionskiy\",\"doi\":\"10.1109/EICONRUS.2019.8657203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with the denoising algorithm based on EMD with adaptive adjustment of the coefficients depending on the noise level. It is compared with the known denoising algorithms based on EMD, wavelets and Wiener filter. The evaluation of the filtration quality was performed. Synthetic signals of a complex non-stationary structure are used as initial data.\",\"PeriodicalId\":6748,\"journal\":{\"name\":\"2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus)\",\"volume\":\"13 1\",\"pages\":\"1240-1243\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EICONRUS.2019.8657203\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EICONRUS.2019.8657203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了基于EMD的噪声去噪算法,该算法根据噪声水平自适应调整系数。并与基于EMD、小波和维纳滤波的去噪算法进行了比较。对过滤质量进行了评价。采用复杂非平稳结构的合成信号作为初始数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Denoising Algorithm Based on EMD with Adaptive Adjustment of Coefficients
This paper deals with the denoising algorithm based on EMD with adaptive adjustment of the coefficients depending on the noise level. It is compared with the known denoising algorithms based on EMD, wavelets and Wiener filter. The evaluation of the filtration quality was performed. Synthetic signals of a complex non-stationary structure are used as initial data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Quality of Indonesian Scientific Articles and Its Neighboring Countries Study of Electrodynamic Levitation Force in a Traction Linear Induction Motor Mathematical Modeling of the Fabry-Perot Interferometer Based on Silicon Plates for Application in Microfluid Sensor Devices The Development Of The Information-Logical Model Of Image Recognition By The Invariant Characteristics Using Statistical Analysis to Fine-Tune the Results of Knapsack-Based Computational Platform Benchmarking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1