使用增强特征脸快速人脸检测

A. Mohan, N. Sudha
{"title":"使用增强特征脸快速人脸检测","authors":"A. Mohan, N. Sudha","doi":"10.1109/ISIEA.2009.5356309","DOIUrl":null,"url":null,"abstract":"This paper describes a new eigenface based face detection using boosted eigen features. Eigenfaces have long been used for face detection and recognition. The basic detection and recogniton system works by projecting the face images onto a feature space that spans significant variations among the training set. But the distance from the face space is not a reliable measure to classify faces from non-faces as some of the non-faces may also lie close to the face space. We propose to build a better classifier by boosting a set of weak classifiers built from the projections onto the eigen vectors of the face space. The proposed system provides significantly better performance compared to the distance measure. Also, we propose to improve the speed of detection in real images using FFT.","PeriodicalId":6447,"journal":{"name":"2009 IEEE Symposium on Industrial Electronics & Applications","volume":"25 1","pages":"1002-1006"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Fast face detection using boosted eigenfaces\",\"authors\":\"A. Mohan, N. Sudha\",\"doi\":\"10.1109/ISIEA.2009.5356309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a new eigenface based face detection using boosted eigen features. Eigenfaces have long been used for face detection and recognition. The basic detection and recogniton system works by projecting the face images onto a feature space that spans significant variations among the training set. But the distance from the face space is not a reliable measure to classify faces from non-faces as some of the non-faces may also lie close to the face space. We propose to build a better classifier by boosting a set of weak classifiers built from the projections onto the eigen vectors of the face space. The proposed system provides significantly better performance compared to the distance measure. Also, we propose to improve the speed of detection in real images using FFT.\",\"PeriodicalId\":6447,\"journal\":{\"name\":\"2009 IEEE Symposium on Industrial Electronics & Applications\",\"volume\":\"25 1\",\"pages\":\"1002-1006\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Symposium on Industrial Electronics & Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIEA.2009.5356309\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Symposium on Industrial Electronics & Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIEA.2009.5356309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

本文提出了一种基于特征脸的人脸检测方法。特征脸一直被用于人脸检测和识别。基本的检测和识别系统通过将人脸图像投影到跨越训练集之间显著变化的特征空间中来工作。但是,与人脸空间的距离并不是区分人脸和非人脸的可靠指标,因为一些非人脸也可能靠近人脸空间。我们建议通过增强一组弱分类器来构建一个更好的分类器,这些分类器是由面部空间的特征向量的投影构建的。与距离测量相比,该系统提供了明显更好的性能。此外,我们还提出了利用FFT提高真实图像检测速度的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fast face detection using boosted eigenfaces
This paper describes a new eigenface based face detection using boosted eigen features. Eigenfaces have long been used for face detection and recognition. The basic detection and recogniton system works by projecting the face images onto a feature space that spans significant variations among the training set. But the distance from the face space is not a reliable measure to classify faces from non-faces as some of the non-faces may also lie close to the face space. We propose to build a better classifier by boosting a set of weak classifiers built from the projections onto the eigen vectors of the face space. The proposed system provides significantly better performance compared to the distance measure. Also, we propose to improve the speed of detection in real images using FFT.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Genetic Algorithm optimization of I/O scales and parameters for FLIC in servomotor control Application and evaluation of high power Zigbee based wireless sensor network in water irrigation control monitoring system Efficiency performance analysis of Series Loaded Resonant converter Parallel distributed compensation based robust fuzzy control A new Shifted Scaled LS channel estimator for Rician flat fading MIMO channel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1