{"title":"多氯联苯","authors":"","doi":"10.1201/9781420032741.ch24","DOIUrl":null,"url":null,"abstract":"Polychlorinated biphenyls (PCBs) are industrial compounds with multiple industrial and commercial uses (Table 41.1). PCBs are chemically inert and stable when heated. These properties contribute greatly to PCBs having become environmental contaminants. The chemical inertness and heat stability properties that make PCBs desirable for industry also protect them from destruction when the products in which they are used are discarded. These same properties also enable PCB residues to persist in the environment for long periods of time and to be transported worldwide when contaminated particulate matter travels through waters, precipitation, wind, and other physical forces. PCBs have a physical structure similar to DDT, and, like DDT, they are classified as aromatic hydrocarbons which contain one or more benzene rings. The presence of chlorine results in DDT, PCBs, and other compounds with similar structures commonly being referred to as chlorinated hydrocarbons. The toxicity of these compounds is associated with the amount of chlorine they contain. The trade name of Aroclor for PCBs that were produced by a manufacturer in the United States contains a numerical designation that specifies the amount of chlorine present in a particular formulation. For example, Aroclor 1221 contains 21 percent chlorine while Aroclor 1254 contains 54 percent chlorine. The first two digits designate the number of carbons in the formulation. The chemical structure of PCBs results in the possibility of many different forms or isomers, (more commonly called congeners) of these compounds. PCBs in other countries have different trade names than Aroclor (Table 41.2).","PeriodicalId":23188,"journal":{"name":"Toxicology Desk Reference","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polychlorinated Biphenyls\",\"authors\":\"\",\"doi\":\"10.1201/9781420032741.ch24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Polychlorinated biphenyls (PCBs) are industrial compounds with multiple industrial and commercial uses (Table 41.1). PCBs are chemically inert and stable when heated. These properties contribute greatly to PCBs having become environmental contaminants. The chemical inertness and heat stability properties that make PCBs desirable for industry also protect them from destruction when the products in which they are used are discarded. These same properties also enable PCB residues to persist in the environment for long periods of time and to be transported worldwide when contaminated particulate matter travels through waters, precipitation, wind, and other physical forces. PCBs have a physical structure similar to DDT, and, like DDT, they are classified as aromatic hydrocarbons which contain one or more benzene rings. The presence of chlorine results in DDT, PCBs, and other compounds with similar structures commonly being referred to as chlorinated hydrocarbons. The toxicity of these compounds is associated with the amount of chlorine they contain. The trade name of Aroclor for PCBs that were produced by a manufacturer in the United States contains a numerical designation that specifies the amount of chlorine present in a particular formulation. For example, Aroclor 1221 contains 21 percent chlorine while Aroclor 1254 contains 54 percent chlorine. The first two digits designate the number of carbons in the formulation. The chemical structure of PCBs results in the possibility of many different forms or isomers, (more commonly called congeners) of these compounds. PCBs in other countries have different trade names than Aroclor (Table 41.2).\",\"PeriodicalId\":23188,\"journal\":{\"name\":\"Toxicology Desk Reference\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxicology Desk Reference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1201/9781420032741.ch24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology Desk Reference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1201/9781420032741.ch24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Polychlorinated biphenyls (PCBs) are industrial compounds with multiple industrial and commercial uses (Table 41.1). PCBs are chemically inert and stable when heated. These properties contribute greatly to PCBs having become environmental contaminants. The chemical inertness and heat stability properties that make PCBs desirable for industry also protect them from destruction when the products in which they are used are discarded. These same properties also enable PCB residues to persist in the environment for long periods of time and to be transported worldwide when contaminated particulate matter travels through waters, precipitation, wind, and other physical forces. PCBs have a physical structure similar to DDT, and, like DDT, they are classified as aromatic hydrocarbons which contain one or more benzene rings. The presence of chlorine results in DDT, PCBs, and other compounds with similar structures commonly being referred to as chlorinated hydrocarbons. The toxicity of these compounds is associated with the amount of chlorine they contain. The trade name of Aroclor for PCBs that were produced by a manufacturer in the United States contains a numerical designation that specifies the amount of chlorine present in a particular formulation. For example, Aroclor 1221 contains 21 percent chlorine while Aroclor 1254 contains 54 percent chlorine. The first two digits designate the number of carbons in the formulation. The chemical structure of PCBs results in the possibility of many different forms or isomers, (more commonly called congeners) of these compounds. PCBs in other countries have different trade names than Aroclor (Table 41.2).