异步电机节能测试系统的精细化仿真与实验研究

Y. Kazakov, I. Palilov
{"title":"异步电机节能测试系统的精细化仿真与实验研究","authors":"Y. Kazakov, I. Palilov","doi":"10.17588/2072-2672.2022.6.018-025","DOIUrl":null,"url":null,"abstract":"When testing asynchronous machines, it is important to use energy-efficient methods, for example, the method of mutual loading of two machines with articulated shafts. One machine operates in the mode of the motor – frequency converter, the second machine operates in the mode of the generator – industrial frequency network. Both machines are simultaneously tested under load and energy costs for testing are reduced due to its recuperation. The method requires a correct loading algorithm. The modeling of the method based on chain models does not consider the implementation feature. Thus, it is advisable to refine the simulation of the asynchronous machine testing system by the mutual load method. The method is based on strict models considering the coupling of machine torque on a common shaft, the operation of machines in the mode of frequency converter, non-sinusoidal supply voltage, saturation of steel, displacement of current in conductors, for example, based on the associated analysis of electromagnetic fields in both machines. The authors have applied the packages of electromechanical units with electrical and mechanical Ansys Simplorer ports and finite element analysis of electromagnetic fields Ansys Maxwell for refined simulation of the asynchronous machine testing system by the method of mutual loading. Experimental studies of the system have been carried out on laboratory equipment using certified devices. A refined simulation of an energy-efficient testing system of asynchronous machines by the method of mutual loading has been carried out. It is based on calculations of the electromagnetic field and allows us to read the transient and steady-state modes of operation of a two-machine unit with a common shaft. An automated stand has been created that allows testing asynchronous machines by the method of mutual loading. The developed refined simulation of electromechanical processes in asynchronous machines during tests by the method of mutual loading with associated calculations of electromagnetic fields in both machines provides calculated results with an error of no more than 5–7 % in comparison with 40 % error of calculations in the transient modes of operation using chain models.","PeriodicalId":23635,"journal":{"name":"Vestnik IGEU","volume":"63 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Refined simulation and experimental study of energy efficient testing system of asynchronous machines\",\"authors\":\"Y. Kazakov, I. Palilov\",\"doi\":\"10.17588/2072-2672.2022.6.018-025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When testing asynchronous machines, it is important to use energy-efficient methods, for example, the method of mutual loading of two machines with articulated shafts. One machine operates in the mode of the motor – frequency converter, the second machine operates in the mode of the generator – industrial frequency network. Both machines are simultaneously tested under load and energy costs for testing are reduced due to its recuperation. The method requires a correct loading algorithm. The modeling of the method based on chain models does not consider the implementation feature. Thus, it is advisable to refine the simulation of the asynchronous machine testing system by the mutual load method. The method is based on strict models considering the coupling of machine torque on a common shaft, the operation of machines in the mode of frequency converter, non-sinusoidal supply voltage, saturation of steel, displacement of current in conductors, for example, based on the associated analysis of electromagnetic fields in both machines. The authors have applied the packages of electromechanical units with electrical and mechanical Ansys Simplorer ports and finite element analysis of electromagnetic fields Ansys Maxwell for refined simulation of the asynchronous machine testing system by the method of mutual loading. Experimental studies of the system have been carried out on laboratory equipment using certified devices. A refined simulation of an energy-efficient testing system of asynchronous machines by the method of mutual loading has been carried out. It is based on calculations of the electromagnetic field and allows us to read the transient and steady-state modes of operation of a two-machine unit with a common shaft. An automated stand has been created that allows testing asynchronous machines by the method of mutual loading. The developed refined simulation of electromechanical processes in asynchronous machines during tests by the method of mutual loading with associated calculations of electromagnetic fields in both machines provides calculated results with an error of no more than 5–7 % in comparison with 40 % error of calculations in the transient modes of operation using chain models.\",\"PeriodicalId\":23635,\"journal\":{\"name\":\"Vestnik IGEU\",\"volume\":\"63 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vestnik IGEU\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17588/2072-2672.2022.6.018-025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vestnik IGEU","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17588/2072-2672.2022.6.018-025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在测试异步机器时,重要的是使用节能的方法,例如,两台机器用铰接轴相互加载的方法。一台机器以电机变频器的方式运行,另一台机器以发电机-工业频率网络的方式运行。两台机器同时在负载下进行测试,并且由于其恢复而降低了测试的能源成本。该方法需要正确的加载算法。基于链模型的方法建模没有考虑实现特性。因此,采用互载法对异步电机测试系统的仿真进行细化是可取的。该方法基于严格的模型,考虑了电机转矩在公共轴上的耦合,电机在变频器模式下的运行,非正弦电源电压,钢的饱和,导体中电流的位移,例如,基于两种电机电磁场的关联分析。采用机电一体化软件Ansys simplover和电磁场有限元分析软件Ansys Maxwell对异步电机测试系统进行了相互加载的精细化仿真。该系统的实验研究已在使用认证设备的实验室设备上进行。采用互载法对异步电机节能测试系统进行了精细化仿真。它以电磁场的计算为基础,使我们能够读取具有共同轴的双机机组的瞬态和稳态运行模式。已经建立了一个自动化的台架,允许通过相互加载的方法测试异步机器。采用相互加载的方法对异步电机在试验过程中的机电过程进行了精细化模拟,并对两台电机的电磁场进行了关联计算,计算结果的误差不超过5 - 7%,而采用链式模型计算的瞬态运行模式的误差为40%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Refined simulation and experimental study of energy efficient testing system of asynchronous machines
When testing asynchronous machines, it is important to use energy-efficient methods, for example, the method of mutual loading of two machines with articulated shafts. One machine operates in the mode of the motor – frequency converter, the second machine operates in the mode of the generator – industrial frequency network. Both machines are simultaneously tested under load and energy costs for testing are reduced due to its recuperation. The method requires a correct loading algorithm. The modeling of the method based on chain models does not consider the implementation feature. Thus, it is advisable to refine the simulation of the asynchronous machine testing system by the mutual load method. The method is based on strict models considering the coupling of machine torque on a common shaft, the operation of machines in the mode of frequency converter, non-sinusoidal supply voltage, saturation of steel, displacement of current in conductors, for example, based on the associated analysis of electromagnetic fields in both machines. The authors have applied the packages of electromechanical units with electrical and mechanical Ansys Simplorer ports and finite element analysis of electromagnetic fields Ansys Maxwell for refined simulation of the asynchronous machine testing system by the method of mutual loading. Experimental studies of the system have been carried out on laboratory equipment using certified devices. A refined simulation of an energy-efficient testing system of asynchronous machines by the method of mutual loading has been carried out. It is based on calculations of the electromagnetic field and allows us to read the transient and steady-state modes of operation of a two-machine unit with a common shaft. An automated stand has been created that allows testing asynchronous machines by the method of mutual loading. The developed refined simulation of electromechanical processes in asynchronous machines during tests by the method of mutual loading with associated calculations of electromagnetic fields in both machines provides calculated results with an error of no more than 5–7 % in comparison with 40 % error of calculations in the transient modes of operation using chain models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Influence of chemical composition of biomass on agglomeration process in fluidized bed of boiler E-75-3,9-440 DFT Synthesis of a robust control system for a manipulation robot with polynomial controllers based on Gramian method Application of submodeling technique to reduce time spent modeling remote magnetic field sensors Solution of inverse heat transfer problem in condenser of a turbine unit with built-in heating unit Increasing energy efficiency of gas piston TPP through integrated use of thermal secondary energy resources
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1