{"title":"基于深度学习的甲状腺良恶性结节超声图像分割与分类","authors":"Min Yang, Austin Lin Yee, Jiafeng Yu","doi":"10.1142/s0218213023400031","DOIUrl":null,"url":null,"abstract":"This study aimed to investigate the effect of an image denoising algorithm based on weighted low-rank matrix restoration on thyroid nodule ultrasound images. A total of 1000 original ultrasound image data sets of thyroid nodules were selected as the study samples. The nodule segmentation data set of thyroid ultrasound region of interest (ROI) images was drawn and acquired. By introducing multiscale features and an attention mechanism to optimize the U-Net model, an ultrasound image segmentation model (F-U-Net) was constructed. The performance of the traditional U network model and full convolutional neural network model (FCN) was analyzed and compared by simulation experiments. The results showed that the dice coefficient, accuracy, and recall of the improved loss function in this study were significantly higher than those of the traditional cross entropy loss function and dice coefficient loss function, and the differences were statistically significant (P < 0.05). The Dice coefficient, accuracy, and recall of the F-U-net model were significantly higher than those of the traditional FCN model and U-net model (P < 0.05). The diagnostic sensitivity, specificity, accuracy, and positive predictive value of the F-U-net model for benign and malignant thyroid nodules were significantly higher than those of the FCN model and U-net model (P < 0.05). In summary, the proposed F-U network can effectively process the ultrasound images of thyroid nodules, improve the image quality, and help to improve the diagnostic effect of benign and malignant thyroid nodules. It provides a data reference for segmentation and reconstruction of benign and malignant ultrasound images of thyroid nodules.","PeriodicalId":50280,"journal":{"name":"International Journal on Artificial Intelligence Tools","volume":"71 1","pages":"2340003:1-2340003:23"},"PeriodicalIF":1.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrasound Image Segmentation and Classification of Benign and Malignant Thyroid Nodules on the Basis of Deep Learning\",\"authors\":\"Min Yang, Austin Lin Yee, Jiafeng Yu\",\"doi\":\"10.1142/s0218213023400031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study aimed to investigate the effect of an image denoising algorithm based on weighted low-rank matrix restoration on thyroid nodule ultrasound images. A total of 1000 original ultrasound image data sets of thyroid nodules were selected as the study samples. The nodule segmentation data set of thyroid ultrasound region of interest (ROI) images was drawn and acquired. By introducing multiscale features and an attention mechanism to optimize the U-Net model, an ultrasound image segmentation model (F-U-Net) was constructed. The performance of the traditional U network model and full convolutional neural network model (FCN) was analyzed and compared by simulation experiments. The results showed that the dice coefficient, accuracy, and recall of the improved loss function in this study were significantly higher than those of the traditional cross entropy loss function and dice coefficient loss function, and the differences were statistically significant (P < 0.05). The Dice coefficient, accuracy, and recall of the F-U-net model were significantly higher than those of the traditional FCN model and U-net model (P < 0.05). The diagnostic sensitivity, specificity, accuracy, and positive predictive value of the F-U-net model for benign and malignant thyroid nodules were significantly higher than those of the FCN model and U-net model (P < 0.05). In summary, the proposed F-U network can effectively process the ultrasound images of thyroid nodules, improve the image quality, and help to improve the diagnostic effect of benign and malignant thyroid nodules. It provides a data reference for segmentation and reconstruction of benign and malignant ultrasound images of thyroid nodules.\",\"PeriodicalId\":50280,\"journal\":{\"name\":\"International Journal on Artificial Intelligence Tools\",\"volume\":\"71 1\",\"pages\":\"2340003:1-2340003:23\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal on Artificial Intelligence Tools\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218213023400031\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Artificial Intelligence Tools","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1142/s0218213023400031","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Ultrasound Image Segmentation and Classification of Benign and Malignant Thyroid Nodules on the Basis of Deep Learning
This study aimed to investigate the effect of an image denoising algorithm based on weighted low-rank matrix restoration on thyroid nodule ultrasound images. A total of 1000 original ultrasound image data sets of thyroid nodules were selected as the study samples. The nodule segmentation data set of thyroid ultrasound region of interest (ROI) images was drawn and acquired. By introducing multiscale features and an attention mechanism to optimize the U-Net model, an ultrasound image segmentation model (F-U-Net) was constructed. The performance of the traditional U network model and full convolutional neural network model (FCN) was analyzed and compared by simulation experiments. The results showed that the dice coefficient, accuracy, and recall of the improved loss function in this study were significantly higher than those of the traditional cross entropy loss function and dice coefficient loss function, and the differences were statistically significant (P < 0.05). The Dice coefficient, accuracy, and recall of the F-U-net model were significantly higher than those of the traditional FCN model and U-net model (P < 0.05). The diagnostic sensitivity, specificity, accuracy, and positive predictive value of the F-U-net model for benign and malignant thyroid nodules were significantly higher than those of the FCN model and U-net model (P < 0.05). In summary, the proposed F-U network can effectively process the ultrasound images of thyroid nodules, improve the image quality, and help to improve the diagnostic effect of benign and malignant thyroid nodules. It provides a data reference for segmentation and reconstruction of benign and malignant ultrasound images of thyroid nodules.
期刊介绍:
The International Journal on Artificial Intelligence Tools (IJAIT) provides an interdisciplinary forum in which AI scientists and professionals can share their research results and report new advances on AI tools or tools that use AI. Tools refer to architectures, languages or algorithms, which constitute the means connecting theory with applications. So, IJAIT is a medium for promoting general and/or special purpose tools, which are very important for the evolution of science and manipulation of knowledge. IJAIT can also be used as a test ground for new AI tools.
Topics covered by IJAIT include but are not limited to: AI in Bioinformatics, AI for Service Engineering, AI for Software Engineering, AI for Ubiquitous Computing, AI for Web Intelligence Applications, AI Parallel Processing Tools (hardware/software), AI Programming Languages, AI Tools for CAD and VLSI Analysis/Design/Testing, AI Tools for Computer Vision and Speech Understanding, AI Tools for Multimedia, Cognitive Informatics, Data Mining and Machine Learning Tools, Heuristic and AI Planning Strategies and Tools, Image Understanding, Integrated/Hybrid AI Approaches, Intelligent System Architectures, Knowledge-Based/Expert Systems, Knowledge Management and Processing Tools, Knowledge Representation Languages, Natural Language Understanding, Neural Networks for AI, Object-Oriented Programming for AI, Reasoning and Evolution of Knowledge Bases, Self-Healing and Autonomous Systems, and Software Engineering for AI.