N. Winkler, P. Neumann, E. Schaffernicht, A. Lilienthal
{"title":"利用传感器网络中的冗余来补偿传感器故障","authors":"N. Winkler, P. Neumann, E. Schaffernicht, A. Lilienthal","doi":"10.1109/SENSORS47087.2021.9639479","DOIUrl":null,"url":null,"abstract":"Wireless sensor networks provide occupational health experts with valuable information about the distribution of air pollutants in an environment. However, especially low-cost sensors may produce faulty measurements or fail completely. Consequently, not only spatial coverage but also redundancy should be a design criterion for the deployment of a sensor network. For a sensor network deployed in a steel factory, we analyze the correlations between sensors and build machine learning forecasting models, to investigate how well the sensor network can compensate for the outage of sensors. While our results show promising prediction quality of the models, they also indicate the presence of spatially very limited events. We, therefore, conclude that initial measurements with, e.g., mobile units, could help to identify important locations to design redundant sensor networks.","PeriodicalId":6775,"journal":{"name":"2021 IEEE Sensors","volume":"1 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Using Redundancy in a Sensor Network to Compensate Sensor Failures\",\"authors\":\"N. Winkler, P. Neumann, E. Schaffernicht, A. Lilienthal\",\"doi\":\"10.1109/SENSORS47087.2021.9639479\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wireless sensor networks provide occupational health experts with valuable information about the distribution of air pollutants in an environment. However, especially low-cost sensors may produce faulty measurements or fail completely. Consequently, not only spatial coverage but also redundancy should be a design criterion for the deployment of a sensor network. For a sensor network deployed in a steel factory, we analyze the correlations between sensors and build machine learning forecasting models, to investigate how well the sensor network can compensate for the outage of sensors. While our results show promising prediction quality of the models, they also indicate the presence of spatially very limited events. We, therefore, conclude that initial measurements with, e.g., mobile units, could help to identify important locations to design redundant sensor networks.\",\"PeriodicalId\":6775,\"journal\":{\"name\":\"2021 IEEE Sensors\",\"volume\":\"1 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Sensors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SENSORS47087.2021.9639479\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Sensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SENSORS47087.2021.9639479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Using Redundancy in a Sensor Network to Compensate Sensor Failures
Wireless sensor networks provide occupational health experts with valuable information about the distribution of air pollutants in an environment. However, especially low-cost sensors may produce faulty measurements or fail completely. Consequently, not only spatial coverage but also redundancy should be a design criterion for the deployment of a sensor network. For a sensor network deployed in a steel factory, we analyze the correlations between sensors and build machine learning forecasting models, to investigate how well the sensor network can compensate for the outage of sensors. While our results show promising prediction quality of the models, they also indicate the presence of spatially very limited events. We, therefore, conclude that initial measurements with, e.g., mobile units, could help to identify important locations to design redundant sensor networks.