使用连续移动遥测技术对心力衰竭患者进行预测性监测的个性化非参数分析的可行性

R. M. Pipke, S. Wegerich, A. Saidi, J. Stehlik
{"title":"使用连续移动遥测技术对心力衰竭患者进行预测性监测的个性化非参数分析的可行性","authors":"R. M. Pipke, S. Wegerich, A. Saidi, J. Stehlik","doi":"10.1145/2534088.2534107","DOIUrl":null,"url":null,"abstract":"Nonparametric model-based analytics personalized to the physiology of each patient are investigated for predictive monitoring of exacerbation in heart failure patients at home. Multivariate vital sign data are provided by means of continuous bio-signal acquisition with a mobile phone-based wearable sensor system worn by patients for several hours a day in the home ambulatory environment. Perturbation analysis demonstrates that individual patient physiological behavior is indeed effectively learned by the analytics, with high sensitivity to changes in physiological dynamics. Comparison of the analytics results with absence of unplanned medical events and self-reported wellness during regular patient follow-up demonstrate a very low false alert burden, suggesting this approach is efficient for remote clinical surveillance.","PeriodicalId":91386,"journal":{"name":"Proceedings Wireless Health ... [electronic resource]. Wireless Health (Conference)","volume":"37 1","pages":"7:1-7:8"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Feasibility of personalized nonparametric analytics for predictive monitoring of heart failure patients using continuous mobile telemetry\",\"authors\":\"R. M. Pipke, S. Wegerich, A. Saidi, J. Stehlik\",\"doi\":\"10.1145/2534088.2534107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nonparametric model-based analytics personalized to the physiology of each patient are investigated for predictive monitoring of exacerbation in heart failure patients at home. Multivariate vital sign data are provided by means of continuous bio-signal acquisition with a mobile phone-based wearable sensor system worn by patients for several hours a day in the home ambulatory environment. Perturbation analysis demonstrates that individual patient physiological behavior is indeed effectively learned by the analytics, with high sensitivity to changes in physiological dynamics. Comparison of the analytics results with absence of unplanned medical events and self-reported wellness during regular patient follow-up demonstrate a very low false alert burden, suggesting this approach is efficient for remote clinical surveillance.\",\"PeriodicalId\":91386,\"journal\":{\"name\":\"Proceedings Wireless Health ... [electronic resource]. Wireless Health (Conference)\",\"volume\":\"37 1\",\"pages\":\"7:1-7:8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Wireless Health ... [electronic resource]. Wireless Health (Conference)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2534088.2534107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Wireless Health ... [electronic resource]. Wireless Health (Conference)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2534088.2534107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

对每位患者的生理个性化的基于非参数模型的分析进行了研究,以预测监测心力衰竭患者在家中的恶化情况。多元生命体征数据是通过基于移动电话的可穿戴传感器系统连续采集生物信号来提供的,患者每天在家庭门诊环境中佩戴几个小时。摄动分析表明,个体患者的生理行为确实是通过分析有效地学习,对生理动力学的变化具有很高的敏感性。在患者定期随访期间,分析结果与没有计划外医疗事件和自我报告的健康状况进行比较,表明错误警报负担非常低,表明该方法对于远程临床监测是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Feasibility of personalized nonparametric analytics for predictive monitoring of heart failure patients using continuous mobile telemetry
Nonparametric model-based analytics personalized to the physiology of each patient are investigated for predictive monitoring of exacerbation in heart failure patients at home. Multivariate vital sign data are provided by means of continuous bio-signal acquisition with a mobile phone-based wearable sensor system worn by patients for several hours a day in the home ambulatory environment. Perturbation analysis demonstrates that individual patient physiological behavior is indeed effectively learned by the analytics, with high sensitivity to changes in physiological dynamics. Comparison of the analytics results with absence of unplanned medical events and self-reported wellness during regular patient follow-up demonstrate a very low false alert burden, suggesting this approach is efficient for remote clinical surveillance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Zero-Effort Camera-Assisted Calibration Techniques for Wearable Motion Sensors. Accurate energy expenditure estimation using smartphone sensors Remote patient monitoring: what impact can data analytics have on cost? PEES: physiology-based end-to-end security for mHealth AsthmaGuru: a framework to improve adherence to asthma medication
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1