基于回归拓扑优化的基因调控网络推断

J. Supper, H. Fröhlich, A. Zell
{"title":"基于回归拓扑优化的基因调控网络推断","authors":"J. Supper, H. Fröhlich, A. Zell","doi":"10.1142/9781860947995_0029","DOIUrl":null,"url":null,"abstract":"Inferring the structure of gene regulatory networks from gene expression data has attracted a growing interest during the last years. Several machine learning related methods, such as Bayesian networks, have been proposed to deal with this challenging problem. However, in many cases, network reconstructions purely based on gene expression data not lead to satisfactory results when comparing the obtained topology against a validation network. Therefore, in this paper we propose an \"inverse\" approach: Starting from a priori specified network topologies, we identify those parts of the network which are relevant for the gene expression data at hand. For this purpose, we employ linear ridge regression to predict the expression level of a given gene from its relevant regulators with high reliability. Calculated statistical significances of the resulting network topologies reveal that slight modifications of the pruned regulatory network enable an additional substantial improvement.","PeriodicalId":74513,"journal":{"name":"Proceedings of the ... Asia-Pacific bioinformatics conference","volume":"67 1","pages":"267-276"},"PeriodicalIF":0.0000,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gene Regulatory Network Inference via Regression Based Topological Refinement\",\"authors\":\"J. Supper, H. Fröhlich, A. Zell\",\"doi\":\"10.1142/9781860947995_0029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inferring the structure of gene regulatory networks from gene expression data has attracted a growing interest during the last years. Several machine learning related methods, such as Bayesian networks, have been proposed to deal with this challenging problem. However, in many cases, network reconstructions purely based on gene expression data not lead to satisfactory results when comparing the obtained topology against a validation network. Therefore, in this paper we propose an \\\"inverse\\\" approach: Starting from a priori specified network topologies, we identify those parts of the network which are relevant for the gene expression data at hand. For this purpose, we employ linear ridge regression to predict the expression level of a given gene from its relevant regulators with high reliability. Calculated statistical significances of the resulting network topologies reveal that slight modifications of the pruned regulatory network enable an additional substantial improvement.\",\"PeriodicalId\":74513,\"journal\":{\"name\":\"Proceedings of the ... Asia-Pacific bioinformatics conference\",\"volume\":\"67 1\",\"pages\":\"267-276\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... Asia-Pacific bioinformatics conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/9781860947995_0029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... Asia-Pacific bioinformatics conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9781860947995_0029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

从基因表达数据推断基因调控网络的结构在过去几年里引起了越来越多的兴趣。一些机器学习相关的方法,如贝叶斯网络,已经被提出来处理这个具有挑战性的问题。然而,在许多情况下,当将获得的拓扑与验证网络进行比较时,纯粹基于基因表达数据的网络重构不会产生令人满意的结果。因此,在本文中,我们提出了一种“反向”方法:从先验指定的网络拓扑开始,我们确定网络中与手头基因表达数据相关的部分。为此,我们采用线性脊回归从相关调控因子中预测给定基因的表达水平,可靠性高。计算得出的网络拓扑的统计意义表明,对修剪后的监管网络进行轻微修改可以实现额外的实质性改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Gene Regulatory Network Inference via Regression Based Topological Refinement
Inferring the structure of gene regulatory networks from gene expression data has attracted a growing interest during the last years. Several machine learning related methods, such as Bayesian networks, have been proposed to deal with this challenging problem. However, in many cases, network reconstructions purely based on gene expression data not lead to satisfactory results when comparing the obtained topology against a validation network. Therefore, in this paper we propose an "inverse" approach: Starting from a priori specified network topologies, we identify those parts of the network which are relevant for the gene expression data at hand. For this purpose, we employ linear ridge regression to predict the expression level of a given gene from its relevant regulators with high reliability. Calculated statistical significances of the resulting network topologies reveal that slight modifications of the pruned regulatory network enable an additional substantial improvement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tuning Privacy-Utility Tradeoff in Genomic Studies Using Selective SNP Hiding. The Future of Bioinformatics CHEMICAL COMPOUND CLASSIFICATION WITH AUTOMATICALLY MINED STRUCTURE PATTERNS. Predicting Nucleolar Proteins Using Support-Vector Machines Proceedings of the 6th Asia-Pacific Bioinformatics Conference, APBC 2008, 14-17 January 2008, Kyoto, Japan
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1