{"title":"快速处理模型对反射对双耳掩模的影响","authors":"Norbert F. Bischof, Pierre G Aublin, B. Seeber","doi":"10.1051/aacus/2023005","DOIUrl":null,"url":null,"abstract":"Sound reflections and late reverberation alter energetic and binaural cues of a target source, thereby affecting its detection in noise. Two experiments investigated detection of harmonic complex tones, centered around 500 Hz, in noise, in a virtual room with different modifications of simulated room impulse responses (RIRs). Stimuli were auralized using the Simulated Open Field Environment’s (SOFE’s) loudspeakers in anechoic space. The target was presented from the front (0°) or 60° azimuth, while an anechoic noise masker was simultaneously presented at 0°. In the first experiment, early reflections were progressively added to the RIR and detection thresholds of the reverberant target were measured. For a frontal sound source, detection thresholds decreased while adding early reflections within the first 45 ms, whereas for a lateral sound source, thresholds remained constant. In the second experiment, early reflections were removed while late reflections were kept along with the direct sound. Results for a target at 0° show that even reflections as late as 150 ms reduce detection thresholds compared to only the direct sound. A binaural model with a sluggishness component following the computation of binaural unmasking in short windows predicts measured and literature results better than when large windows are used.","PeriodicalId":48486,"journal":{"name":"Acta Acustica","volume":"65 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Fast processing models effects of reflections on binaural unmasking\",\"authors\":\"Norbert F. Bischof, Pierre G Aublin, B. Seeber\",\"doi\":\"10.1051/aacus/2023005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sound reflections and late reverberation alter energetic and binaural cues of a target source, thereby affecting its detection in noise. Two experiments investigated detection of harmonic complex tones, centered around 500 Hz, in noise, in a virtual room with different modifications of simulated room impulse responses (RIRs). Stimuli were auralized using the Simulated Open Field Environment’s (SOFE’s) loudspeakers in anechoic space. The target was presented from the front (0°) or 60° azimuth, while an anechoic noise masker was simultaneously presented at 0°. In the first experiment, early reflections were progressively added to the RIR and detection thresholds of the reverberant target were measured. For a frontal sound source, detection thresholds decreased while adding early reflections within the first 45 ms, whereas for a lateral sound source, thresholds remained constant. In the second experiment, early reflections were removed while late reflections were kept along with the direct sound. Results for a target at 0° show that even reflections as late as 150 ms reduce detection thresholds compared to only the direct sound. A binaural model with a sluggishness component following the computation of binaural unmasking in short windows predicts measured and literature results better than when large windows are used.\",\"PeriodicalId\":48486,\"journal\":{\"name\":\"Acta Acustica\",\"volume\":\"65 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Acustica\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1051/aacus/2023005\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Acustica","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1051/aacus/2023005","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ACOUSTICS","Score":null,"Total":0}
Fast processing models effects of reflections on binaural unmasking
Sound reflections and late reverberation alter energetic and binaural cues of a target source, thereby affecting its detection in noise. Two experiments investigated detection of harmonic complex tones, centered around 500 Hz, in noise, in a virtual room with different modifications of simulated room impulse responses (RIRs). Stimuli were auralized using the Simulated Open Field Environment’s (SOFE’s) loudspeakers in anechoic space. The target was presented from the front (0°) or 60° azimuth, while an anechoic noise masker was simultaneously presented at 0°. In the first experiment, early reflections were progressively added to the RIR and detection thresholds of the reverberant target were measured. For a frontal sound source, detection thresholds decreased while adding early reflections within the first 45 ms, whereas for a lateral sound source, thresholds remained constant. In the second experiment, early reflections were removed while late reflections were kept along with the direct sound. Results for a target at 0° show that even reflections as late as 150 ms reduce detection thresholds compared to only the direct sound. A binaural model with a sluggishness component following the computation of binaural unmasking in short windows predicts measured and literature results better than when large windows are used.
期刊介绍:
Acta Acustica, the Journal of the European Acoustics Association (EAA).
After the publication of its Journal Acta Acustica from 1993 to 1995, the EAA published Acta Acustica united with Acustica from 1996 to 2019. From 2020, the EAA decided to publish a journal in full Open Access. See Article Processing charges.
Acta Acustica reports on original scientific research in acoustics and on engineering applications. The journal considers review papers, scientific papers, technical and applied papers, short communications, letters to the editor. From time to time, special issues and review articles are also published. For book reviews or doctoral thesis abstracts, please contact the Editor in Chief.