摘要B38: NCOR2新剪接变体BQ323636.1在乳腺癌氧化应激调节中的作用

M. Leung, H. Tsoi, E. Man, E. Lam, U. Khoo
{"title":"摘要B38: NCOR2新剪接变体BQ323636.1在乳腺癌氧化应激调节中的作用","authors":"M. Leung, H. Tsoi, E. Man, E. Lam, U. Khoo","doi":"10.1158/1557-3125.ADVBC17-B38","DOIUrl":null,"url":null,"abstract":"Breast cancer is the most common type of female cancer. Reactive oxygen species (ROS) plays an important role in the signaling pathways governing survival and proliferation of breast cancer cells. Several chemotherapeutic drugs, such as taxanes, platinum compounds, and anthracyclines, induce cell death by enhancing the levels of ROS. Nuclear factor erythroid 2-related factor 2 (NRF2) is the master transcription factor regulating antioxidative responses against ROS. Overexpression of NRF2 has been found in breast cancer and it modulates oxidative stress response, leading to drug resistance in cancers. Our previous splice array study identified a novel splice variant of NCOR2, BQ323636.1 (BQ), as predictor of tamoxifen resistance in breast cancer. In the current study, we show overexpression of BQ could promote cell proliferation and protect cells from oxidative stress. In addition, overexpression of BQ could reduce the levels of ROS in breast cancer cells. We therefore hypothesized that BQ could compromise oxidative stress via the NRF2 pathway. By qPCR assay, several downstream targets of NRF2 were found to be upregulated in BQ-overexpressing cells. This suggested that NRF2 transcriptional activity could be modulated by BQ. The results from luciferase reporter assay confirmed that NCOR2 could repress the transcriptional activity via antioxidant response element (ARE), the primary binding site of NRF2 in promoter region. BQ could reverse the repressive effect of NCOR2 on ARE, suggesting that BQ might modulate NRF2 activity via NCOR2. Co-immunoprecipitation indicated NCOR2 interacted with NRF2. BQ overexpression might inhibit such an interaction. Taken together, our results suggest that BQ regulates NRF2 signaling pathway via interfering with NCOR2 activity. Our findings reveal a novel role for BQ as a modulator of NRF2 and oxidative stress in breast cancer. Citation Format: Man Hong Leung, Ho Tsoi, Ellen Pui Sum Man, Eric Wing-Fai Lam, Ui Soon Khoo. The role of BQ323636.1, a novel splice variant of NCOR2, in modulation of oxidative stress in breast cancer [abstract]. In: Proceedings of the AACR Special Conference: Advances in Breast Cancer Research; 2017 Oct 7-10; Hollywood, CA. Philadelphia (PA): AACR; Mol Cancer Res 2018;16(8_Suppl):Abstract nr B38.","PeriodicalId":20897,"journal":{"name":"Resistance Mechanisms","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Abstract B38: The role of BQ323636.1, a novel splice variant of NCOR2, in modulation of oxidative stress in breast cancer\",\"authors\":\"M. Leung, H. Tsoi, E. Man, E. Lam, U. Khoo\",\"doi\":\"10.1158/1557-3125.ADVBC17-B38\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Breast cancer is the most common type of female cancer. Reactive oxygen species (ROS) plays an important role in the signaling pathways governing survival and proliferation of breast cancer cells. Several chemotherapeutic drugs, such as taxanes, platinum compounds, and anthracyclines, induce cell death by enhancing the levels of ROS. Nuclear factor erythroid 2-related factor 2 (NRF2) is the master transcription factor regulating antioxidative responses against ROS. Overexpression of NRF2 has been found in breast cancer and it modulates oxidative stress response, leading to drug resistance in cancers. Our previous splice array study identified a novel splice variant of NCOR2, BQ323636.1 (BQ), as predictor of tamoxifen resistance in breast cancer. In the current study, we show overexpression of BQ could promote cell proliferation and protect cells from oxidative stress. In addition, overexpression of BQ could reduce the levels of ROS in breast cancer cells. We therefore hypothesized that BQ could compromise oxidative stress via the NRF2 pathway. By qPCR assay, several downstream targets of NRF2 were found to be upregulated in BQ-overexpressing cells. This suggested that NRF2 transcriptional activity could be modulated by BQ. The results from luciferase reporter assay confirmed that NCOR2 could repress the transcriptional activity via antioxidant response element (ARE), the primary binding site of NRF2 in promoter region. BQ could reverse the repressive effect of NCOR2 on ARE, suggesting that BQ might modulate NRF2 activity via NCOR2. Co-immunoprecipitation indicated NCOR2 interacted with NRF2. BQ overexpression might inhibit such an interaction. Taken together, our results suggest that BQ regulates NRF2 signaling pathway via interfering with NCOR2 activity. Our findings reveal a novel role for BQ as a modulator of NRF2 and oxidative stress in breast cancer. Citation Format: Man Hong Leung, Ho Tsoi, Ellen Pui Sum Man, Eric Wing-Fai Lam, Ui Soon Khoo. The role of BQ323636.1, a novel splice variant of NCOR2, in modulation of oxidative stress in breast cancer [abstract]. In: Proceedings of the AACR Special Conference: Advances in Breast Cancer Research; 2017 Oct 7-10; Hollywood, CA. Philadelphia (PA): AACR; Mol Cancer Res 2018;16(8_Suppl):Abstract nr B38.\",\"PeriodicalId\":20897,\"journal\":{\"name\":\"Resistance Mechanisms\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Resistance Mechanisms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1158/1557-3125.ADVBC17-B38\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Resistance Mechanisms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1158/1557-3125.ADVBC17-B38","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

乳腺癌是最常见的女性癌症。活性氧(ROS)在乳腺癌细胞存活和增殖的信号通路中起着重要作用。一些化疗药物,如紫杉烷、铂化合物和蒽环类药物,通过提高ROS水平诱导细胞死亡。核因子红细胞2相关因子2 (NRF2)是调控抗氧化应答的主要转录因子。在乳腺癌中发现NRF2过表达,它调节氧化应激反应,导致癌症耐药。我们之前的剪接阵列研究发现了NCOR2的一个新的剪接变体BQ323636.1 (BQ),作为乳腺癌他莫昔芬耐药的预测因子。在目前的研究中,我们发现过表达BQ可以促进细胞增殖,保护细胞免受氧化应激。此外,BQ的过表达可以降低乳腺癌细胞中ROS的水平。因此,我们假设BQ可以通过NRF2途径损害氧化应激。通过qPCR检测,我们发现NRF2的几个下游靶点在bq过表达的细胞中上调。这表明BQ可以调节NRF2的转录活性。荧光素酶报告基因实验结果证实,NCOR2可通过NRF2启动子区主要结合位点抗氧化反应元件(anti - response element, ARE)抑制转录活性。BQ可以逆转NCOR2对ARE的抑制作用,表明BQ可能通过NCOR2调节NRF2的活性。共免疫沉淀表明NCOR2与NRF2相互作用。BQ过表达可能会抑制这种相互作用。综上所述,我们的研究结果表明BQ通过干扰NCOR2活性来调节NRF2信号通路。我们的研究结果揭示了BQ在乳腺癌中作为NRF2和氧化应激调节剂的新作用。引文格式:梁文康、蔡皓、文佩森、林永辉、邱义顺。NCOR2新剪接变异体BQ323636.1在乳腺癌氧化应激调节中的作用[摘要]。摘自:AACR特别会议论文集:乳腺癌研究进展;2017年10月7-10日;费城(PA): AACR;癌症学报,2018;16(8 -增刊):摘要nr B38。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Abstract B38: The role of BQ323636.1, a novel splice variant of NCOR2, in modulation of oxidative stress in breast cancer
Breast cancer is the most common type of female cancer. Reactive oxygen species (ROS) plays an important role in the signaling pathways governing survival and proliferation of breast cancer cells. Several chemotherapeutic drugs, such as taxanes, platinum compounds, and anthracyclines, induce cell death by enhancing the levels of ROS. Nuclear factor erythroid 2-related factor 2 (NRF2) is the master transcription factor regulating antioxidative responses against ROS. Overexpression of NRF2 has been found in breast cancer and it modulates oxidative stress response, leading to drug resistance in cancers. Our previous splice array study identified a novel splice variant of NCOR2, BQ323636.1 (BQ), as predictor of tamoxifen resistance in breast cancer. In the current study, we show overexpression of BQ could promote cell proliferation and protect cells from oxidative stress. In addition, overexpression of BQ could reduce the levels of ROS in breast cancer cells. We therefore hypothesized that BQ could compromise oxidative stress via the NRF2 pathway. By qPCR assay, several downstream targets of NRF2 were found to be upregulated in BQ-overexpressing cells. This suggested that NRF2 transcriptional activity could be modulated by BQ. The results from luciferase reporter assay confirmed that NCOR2 could repress the transcriptional activity via antioxidant response element (ARE), the primary binding site of NRF2 in promoter region. BQ could reverse the repressive effect of NCOR2 on ARE, suggesting that BQ might modulate NRF2 activity via NCOR2. Co-immunoprecipitation indicated NCOR2 interacted with NRF2. BQ overexpression might inhibit such an interaction. Taken together, our results suggest that BQ regulates NRF2 signaling pathway via interfering with NCOR2 activity. Our findings reveal a novel role for BQ as a modulator of NRF2 and oxidative stress in breast cancer. Citation Format: Man Hong Leung, Ho Tsoi, Ellen Pui Sum Man, Eric Wing-Fai Lam, Ui Soon Khoo. The role of BQ323636.1, a novel splice variant of NCOR2, in modulation of oxidative stress in breast cancer [abstract]. In: Proceedings of the AACR Special Conference: Advances in Breast Cancer Research; 2017 Oct 7-10; Hollywood, CA. Philadelphia (PA): AACR; Mol Cancer Res 2018;16(8_Suppl):Abstract nr B38.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Abstract B36: Progesterone receptor signaling in estrogen receptor-positive breast cancer Abstract A45: Kinome rewiring reveals AURKA is a molecular barrier to the efficacy of PI3K/mTOR-pathway inhibitors in breast cancer Abstract B34: Novel synergistic combination therapies with BET bromodomain inhibitors in triple-negative breast cancer Abstract A47: Long-term treatment of bortezomib reduced resistance to doxorubicin by reducing CerS6/GCS and elevating CerS2/GBA expressions Abstract A46: KLF4 overcomes tamoxifen resistance by suppressing MAPK signaling pathway in breast cancer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1