{"title":"压力鲁棒Stokes离散速度误差的保证上界","authors":"P. Lederer, C. Merdon","doi":"10.1515/jnma-2021-0078","DOIUrl":null,"url":null,"abstract":"Abstract This paper aims to improve guaranteed error control for the Stokes problem with a focus on pressure-robustness, i.e., for discretisations that compute a discrete velocity that is independent of the exact pressure. A Prager–Synge type result relates the velocity errors of divergence-free primal and perfectly equilibrated dual mixed methods for the velocity stress. The first main result of the paper is a framework with relaxed constraints on the primal and dual method. This enables to use a recently developed mass conserving mixed stress discretisation for the design of equilibrated fluxes and to obtain pressure-independent guaranteed upper bounds for any pressure-robust (not necessarily divergence-free) primal discretisation. The second main result is a provably efficient local design of the equilibrated fluxes with comparably low numerical costs. Numerical examples verify the theoretical findings and show that efficiency indices of our novel guaranteed upper bounds are close to one.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2020-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Guaranteed upper bounds for the velocity error of pressure-robust Stokes discretisations\",\"authors\":\"P. Lederer, C. Merdon\",\"doi\":\"10.1515/jnma-2021-0078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper aims to improve guaranteed error control for the Stokes problem with a focus on pressure-robustness, i.e., for discretisations that compute a discrete velocity that is independent of the exact pressure. A Prager–Synge type result relates the velocity errors of divergence-free primal and perfectly equilibrated dual mixed methods for the velocity stress. The first main result of the paper is a framework with relaxed constraints on the primal and dual method. This enables to use a recently developed mass conserving mixed stress discretisation for the design of equilibrated fluxes and to obtain pressure-independent guaranteed upper bounds for any pressure-robust (not necessarily divergence-free) primal discretisation. The second main result is a provably efficient local design of the equilibrated fluxes with comparably low numerical costs. Numerical examples verify the theoretical findings and show that efficiency indices of our novel guaranteed upper bounds are close to one.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2020-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/jnma-2021-0078\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jnma-2021-0078","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Guaranteed upper bounds for the velocity error of pressure-robust Stokes discretisations
Abstract This paper aims to improve guaranteed error control for the Stokes problem with a focus on pressure-robustness, i.e., for discretisations that compute a discrete velocity that is independent of the exact pressure. A Prager–Synge type result relates the velocity errors of divergence-free primal and perfectly equilibrated dual mixed methods for the velocity stress. The first main result of the paper is a framework with relaxed constraints on the primal and dual method. This enables to use a recently developed mass conserving mixed stress discretisation for the design of equilibrated fluxes and to obtain pressure-independent guaranteed upper bounds for any pressure-robust (not necessarily divergence-free) primal discretisation. The second main result is a provably efficient local design of the equilibrated fluxes with comparably low numerical costs. Numerical examples verify the theoretical findings and show that efficiency indices of our novel guaranteed upper bounds are close to one.