基于周期信号频率不变变换(FIT-PS)的NILM参数优化事件检测

Pirmin Held, Daniel Weißhaar, S. Mauch, D. Abdeslam, Dirk Benyoucef
{"title":"基于周期信号频率不变变换(FIT-PS)的NILM参数优化事件检测","authors":"Pirmin Held, Daniel Weißhaar, S. Mauch, D. Abdeslam, Dirk Benyoucef","doi":"10.1109/ETFA.2018.8502522","DOIUrl":null,"url":null,"abstract":"This paper describes the optimization of parameters of an event detection method for Non-Intrusive Load Monitoring (NILM). The input signal consisting of voltage and current was processed with FIT-PS. An event detection method is presented with regard to the adjustable parameters. For parameter optimization the methods simulated annealing and pattern search are used. By using automatic parameter optimization methods, previous results based on manually selected parameters can be significantly improved up to 11.5 %. In the runtime investigation, pattern search has clear advantages over simulated annealing for comparable or better results. In addition, it is possible in the future to adapt this method very quickly to other boundary conditions.","PeriodicalId":6566,"journal":{"name":"2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation (ETFA)","volume":"13 1","pages":"832-837"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parameter Optimized Event Detection for NILM Using Frequency Invariant Transformation of Periodic Signals (FIT-PS)\",\"authors\":\"Pirmin Held, Daniel Weißhaar, S. Mauch, D. Abdeslam, Dirk Benyoucef\",\"doi\":\"10.1109/ETFA.2018.8502522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes the optimization of parameters of an event detection method for Non-Intrusive Load Monitoring (NILM). The input signal consisting of voltage and current was processed with FIT-PS. An event detection method is presented with regard to the adjustable parameters. For parameter optimization the methods simulated annealing and pattern search are used. By using automatic parameter optimization methods, previous results based on manually selected parameters can be significantly improved up to 11.5 %. In the runtime investigation, pattern search has clear advantages over simulated annealing for comparable or better results. In addition, it is possible in the future to adapt this method very quickly to other boundary conditions.\",\"PeriodicalId\":6566,\"journal\":{\"name\":\"2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation (ETFA)\",\"volume\":\"13 1\",\"pages\":\"832-837\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation (ETFA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ETFA.2018.8502522\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation (ETFA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETFA.2018.8502522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种非侵入式负荷监测(NILM)事件检测方法的参数优化。由电压和电流组成的输入信号用FIT-PS进行处理。提出了一种基于可调参数的事件检测方法。参数优化采用模拟退火和模式搜索两种方法。采用自动参数优化方法,可将以往基于人工选择参数的结果显著提高11.5%。在运行时调查中,模式搜索与模拟退火相比具有明显的优势,可以获得类似或更好的结果。此外,将来有可能使这种方法非常迅速地适应其他边界条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Parameter Optimized Event Detection for NILM Using Frequency Invariant Transformation of Periodic Signals (FIT-PS)
This paper describes the optimization of parameters of an event detection method for Non-Intrusive Load Monitoring (NILM). The input signal consisting of voltage and current was processed with FIT-PS. An event detection method is presented with regard to the adjustable parameters. For parameter optimization the methods simulated annealing and pattern search are used. By using automatic parameter optimization methods, previous results based on manually selected parameters can be significantly improved up to 11.5 %. In the runtime investigation, pattern search has clear advantages over simulated annealing for comparable or better results. In addition, it is possible in the future to adapt this method very quickly to other boundary conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Scheduling and Situation-Adaptive Operation for Energy Efficiency of Hot Press Forging Factory Application of the Internet of Things (IoT) Technology in Consumer Electronics - Case Study Moving Average control chart for the detection and isolation of temporal faults in stochastic Petri nets A Prototype Implementation of Wi-Fi Seamless Redundancy with Reactive Duplication Avoidance Continuous Maintenance System for Optimal Scheduling Based on Real-Time Machine Monitoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1