IRAS 16293-2422:一个非常年轻的双星系统

L. Mundy, B. Wilking, G. Blake, A. Sargent, H. Wootten
{"title":"IRAS 16293-2422:一个非常年轻的双星系统","authors":"L. Mundy, B. Wilking, G. Blake, A. Sargent, H. Wootten","doi":"10.1086/170939","DOIUrl":null,"url":null,"abstract":"We present 4\".5 x 2\".5 resolution millimeter wavelength observations of the young far-infrared source IRAS \n16293-2422 which resolve the continuum emission into two sources, MM 1 and MM 2. These sources coincide with known radio continuum sources and may constitute a very young binary system with a projected separation of 840 AU. Flux measurements from 18 cm to 25 μm show that the majority of the millimeter wavelength emission arises from dust within 300 AU of the individual central objects. The total dynamical mass of 1.1-1.3 M_⊙, coupled with our mass estimates for MM 1 and MM 2, suggests that the mass in circumstellar material is comparable to that of the central stellar cores. Since the stellar masses are constrained to be ≤ 0.5 M_⊙ each, it is likely that the bolometric luminosity of 30-40 L_⊙ is derived mainly from accretion of the observed circumstellar material. Maps of the J = 2, 3-1, 2 transition of SO obtained simultaneously show that this emission is centered on MM 1, with weaker emission in a clumpy distribution to the east and west. No SO emission is detected toward MM 2, indicating an upper limit to the fractional abundance which is a factor of 10 below that toward MM 1. We propose that the SO emission toward MM 1 is a result of the outflow activity associated with this source and that the outlying emission clumps trace regions of mild interaction between the outflow and the ambient cloud.","PeriodicalId":9423,"journal":{"name":"Bulletin of the American Astronomical Society","volume":"10 1","pages":"1223"},"PeriodicalIF":0.0000,"publicationDate":"1989-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"93","resultStr":"{\"title\":\"IRAS 16293-2422: A Very Young Binary System\",\"authors\":\"L. Mundy, B. Wilking, G. Blake, A. Sargent, H. Wootten\",\"doi\":\"10.1086/170939\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present 4\\\".5 x 2\\\".5 resolution millimeter wavelength observations of the young far-infrared source IRAS \\n16293-2422 which resolve the continuum emission into two sources, MM 1 and MM 2. These sources coincide with known radio continuum sources and may constitute a very young binary system with a projected separation of 840 AU. Flux measurements from 18 cm to 25 μm show that the majority of the millimeter wavelength emission arises from dust within 300 AU of the individual central objects. The total dynamical mass of 1.1-1.3 M_⊙, coupled with our mass estimates for MM 1 and MM 2, suggests that the mass in circumstellar material is comparable to that of the central stellar cores. Since the stellar masses are constrained to be ≤ 0.5 M_⊙ each, it is likely that the bolometric luminosity of 30-40 L_⊙ is derived mainly from accretion of the observed circumstellar material. Maps of the J = 2, 3-1, 2 transition of SO obtained simultaneously show that this emission is centered on MM 1, with weaker emission in a clumpy distribution to the east and west. No SO emission is detected toward MM 2, indicating an upper limit to the fractional abundance which is a factor of 10 below that toward MM 1. We propose that the SO emission toward MM 1 is a result of the outflow activity associated with this source and that the outlying emission clumps trace regions of mild interaction between the outflow and the ambient cloud.\",\"PeriodicalId\":9423,\"journal\":{\"name\":\"Bulletin of the American Astronomical Society\",\"volume\":\"10 1\",\"pages\":\"1223\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1989-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"93\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the American Astronomical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1086/170939\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the American Astronomical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1086/170939","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 93

摘要

我们呈现4”。5 × 2”。对年轻远红外源IRAS 16293-2422的5分辨率毫米波观测,将连续辐射分解为两个源,mm1和mm2。这些源与已知的射电连续源重合,可能构成一个非常年轻的双星系统,预计距离为840天文单位。从18 cm到25 μm的通量测量表明,大部分毫米波发射来自距离单个中心物体300 AU以内的尘埃。总动力学质量为1.1-1.3 M_⊙,再加上我们对mm1和mm2的质量估计,表明星周物质的质量与恒星中心核心的质量相当。由于恒星的质量被限制在每颗≤0.5 M_⊙,30-40 L_⊙的热光度很可能主要来自观测到的星周物质的吸积。同时获得的SO的J = 2,3 - 1,2跃迁图显示,该辐射以MM 1为中心,东、西呈块状分布,辐射较弱。向mm2方向未检测到SO排放,表明分数丰度的上限比向mm1方向低10倍。我们提出,向mm1发射的SO是与该源相关的流出活动的结果,并且外围的发射团块追踪了流出和周围云之间轻度相互作用的区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
IRAS 16293-2422: A Very Young Binary System
We present 4".5 x 2".5 resolution millimeter wavelength observations of the young far-infrared source IRAS 16293-2422 which resolve the continuum emission into two sources, MM 1 and MM 2. These sources coincide with known radio continuum sources and may constitute a very young binary system with a projected separation of 840 AU. Flux measurements from 18 cm to 25 μm show that the majority of the millimeter wavelength emission arises from dust within 300 AU of the individual central objects. The total dynamical mass of 1.1-1.3 M_⊙, coupled with our mass estimates for MM 1 and MM 2, suggests that the mass in circumstellar material is comparable to that of the central stellar cores. Since the stellar masses are constrained to be ≤ 0.5 M_⊙ each, it is likely that the bolometric luminosity of 30-40 L_⊙ is derived mainly from accretion of the observed circumstellar material. Maps of the J = 2, 3-1, 2 transition of SO obtained simultaneously show that this emission is centered on MM 1, with weaker emission in a clumpy distribution to the east and west. No SO emission is detected toward MM 2, indicating an upper limit to the fractional abundance which is a factor of 10 below that toward MM 1. We propose that the SO emission toward MM 1 is a result of the outflow activity associated with this source and that the outlying emission clumps trace regions of mild interaction between the outflow and the ambient cloud.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
NASA Ames Thermophysics Ground Test Facilities Supporting Future Planetary Atmospheric Entry Solar System Science with Space Telescopes Rapid Response and Robotic Telescopes For Understanding Small Body Transient Science Impact of Satellite Constellations on Optical Astronomy and Recommendations Toward Mitigations Gender and sexual minorities in astronomy and planetary science face increased risks of harassment and assault
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1