从运动捕获数据的材料处理操作的初始朱莉娅模拟方法

M. Hernández, Damian Valles, David C. Wierschem, Rachel M. Koldenhoven, G. Koutitas, Francis Mendez, S. Aslan, Jesús A. Jiménez
{"title":"从运动捕获数据的材料处理操作的初始朱莉娅模拟方法","authors":"M. Hernández, Damian Valles, David C. Wierschem, Rachel M. Koldenhoven, G. Koutitas, Francis Mendez, S. Aslan, Jesús A. Jiménez","doi":"10.1109/IEMCON51383.2020.9284829","DOIUrl":null,"url":null,"abstract":"Performing modeling simulations with visualization and control can be rather difficult for dynamical models or other diverse applications. This work demonstrates the utility of the Julia programming language to solve this problem by being able to keep a simple condensed code and creating a powerful visual model with various controls. The simulation application is based on material handling tasks that are analyzed for human fatigue from repetitive operations. The aim is to detect human motions when performing the tasks and predict fatigue levels associated with these activities. The Julia simulation development addresses developing a computational solution to generate human subjects performing material handling operations synthetically. With the use of several Julia packages, the simulation development used the data from the Qualisys Motion Capture Systems and rendered each of the 41 points of data of a human subject performing lifting and lowering repetitive task.","PeriodicalId":6871,"journal":{"name":"2020 11th IEEE Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON)","volume":"5 1","pages":"0718-0722"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Initial Julia Simulation Approach to Material Handling Operations from Motion Captured Data\",\"authors\":\"M. Hernández, Damian Valles, David C. Wierschem, Rachel M. Koldenhoven, G. Koutitas, Francis Mendez, S. Aslan, Jesús A. Jiménez\",\"doi\":\"10.1109/IEMCON51383.2020.9284829\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Performing modeling simulations with visualization and control can be rather difficult for dynamical models or other diverse applications. This work demonstrates the utility of the Julia programming language to solve this problem by being able to keep a simple condensed code and creating a powerful visual model with various controls. The simulation application is based on material handling tasks that are analyzed for human fatigue from repetitive operations. The aim is to detect human motions when performing the tasks and predict fatigue levels associated with these activities. The Julia simulation development addresses developing a computational solution to generate human subjects performing material handling operations synthetically. With the use of several Julia packages, the simulation development used the data from the Qualisys Motion Capture Systems and rendered each of the 41 points of data of a human subject performing lifting and lowering repetitive task.\",\"PeriodicalId\":6871,\"journal\":{\"name\":\"2020 11th IEEE Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON)\",\"volume\":\"5 1\",\"pages\":\"0718-0722\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 11th IEEE Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEMCON51383.2020.9284829\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 11th IEEE Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMCON51383.2020.9284829","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于动态模型或其他不同的应用程序,使用可视化和控制执行建模仿真可能相当困难。这项工作演示了Julia编程语言解决这个问题的实用程序,它能够保持简单的压缩代码,并创建具有各种控件的强大可视化模型。模拟应用程序基于材料处理任务,对重复性操作引起的人类疲劳进行分析。目的是检测人类在执行任务时的动作,并预测与这些活动相关的疲劳程度。Julia模拟开发涉及开发计算解决方案,以生成执行材料处理操作的人类受试者。通过使用几个Julia软件包,模拟开发使用了来自Qualisys运动捕捉系统的数据,并呈现了人类受试者执行抬起和放下重复任务的41点数据中的每一点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Initial Julia Simulation Approach to Material Handling Operations from Motion Captured Data
Performing modeling simulations with visualization and control can be rather difficult for dynamical models or other diverse applications. This work demonstrates the utility of the Julia programming language to solve this problem by being able to keep a simple condensed code and creating a powerful visual model with various controls. The simulation application is based on material handling tasks that are analyzed for human fatigue from repetitive operations. The aim is to detect human motions when performing the tasks and predict fatigue levels associated with these activities. The Julia simulation development addresses developing a computational solution to generate human subjects performing material handling operations synthetically. With the use of several Julia packages, the simulation development used the data from the Qualisys Motion Capture Systems and rendered each of the 41 points of data of a human subject performing lifting and lowering repetitive task.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Financial Time Series Stock Price Prediction using Deep Learning Development of a Low-cost LoRa based SCADA system for Monitoring and Supervisory Control of Small Renewable Energy Generation Systems A Systematic Literature Review in Causal Association Rules Mining Distance-Based Anomaly Detection for Industrial Surfaces Using Triplet Networks Analysis of Requirements for Autonomous Driving Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1