基于云的物联网框架改进的智能医疗系统,用于心脏病预测

IF 2 4区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS Information Technology and Control Pub Date : 2023-07-15 DOI:10.5755/j01.itc.52.2.32777
Suma Christal, Mary Sundararajan, G. Bharathi, Umasankar Loganathan, Surendar Vadivel
{"title":"基于云的物联网框架改进的智能医疗系统,用于心脏病预测","authors":"Suma Christal, Mary Sundararajan, G. Bharathi, Umasankar Loganathan, Surendar Vadivel","doi":"10.5755/j01.itc.52.2.32777","DOIUrl":null,"url":null,"abstract":"Smart healthcare systems in the cloud-based IoT framework for the prediction of heart disease improve the patient's health status and minimizes the death rate. The prediction of heart disease is a challenging one. Early prediction of heart disease may reduce the risk of patient illness and monitoring in real-time to avoid the risk. The view of existing algorithms is inaccurate in early prediction which took a lot of time for the prediction and inaccurate early prediction of heart disease. To overcome these issues, this paper proposed a sparse autoencoder with Galactic Swarm Optimization (SAE-GSO) algorithm. A sparse encoder predicts heart disease and enhances the accurate prediction, tuning the parameters of sparsity regularity in the sparse autoencoder, Galactic Swarm optimization algorithm is implemented. The proposed work enhances the prediction rate of heart diseases, minimizing the error rate, and maximizing the accuracy. The accuracy rate of the proposed work of SAE-GSO in the Cleveland Dataset produces got 92.23 %, GBT got 65.12 %, SAE got 87.34%, and NB got 83.16 %. The accuracy rate of the proposed work of SAE-GSO in the Framingham Dataset produced 92.59 %, GBT got 69.16 %, SAE got 86.25%, and NB got 82.37%.","PeriodicalId":54982,"journal":{"name":"Information Technology and Control","volume":"42 1","pages":"529-540"},"PeriodicalIF":2.0000,"publicationDate":"2023-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved Smart Healthcare System of Cloud-Based IoT Framework for the Prediction of Heart Disease\",\"authors\":\"Suma Christal, Mary Sundararajan, G. Bharathi, Umasankar Loganathan, Surendar Vadivel\",\"doi\":\"10.5755/j01.itc.52.2.32777\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Smart healthcare systems in the cloud-based IoT framework for the prediction of heart disease improve the patient's health status and minimizes the death rate. The prediction of heart disease is a challenging one. Early prediction of heart disease may reduce the risk of patient illness and monitoring in real-time to avoid the risk. The view of existing algorithms is inaccurate in early prediction which took a lot of time for the prediction and inaccurate early prediction of heart disease. To overcome these issues, this paper proposed a sparse autoencoder with Galactic Swarm Optimization (SAE-GSO) algorithm. A sparse encoder predicts heart disease and enhances the accurate prediction, tuning the parameters of sparsity regularity in the sparse autoencoder, Galactic Swarm optimization algorithm is implemented. The proposed work enhances the prediction rate of heart diseases, minimizing the error rate, and maximizing the accuracy. The accuracy rate of the proposed work of SAE-GSO in the Cleveland Dataset produces got 92.23 %, GBT got 65.12 %, SAE got 87.34%, and NB got 83.16 %. The accuracy rate of the proposed work of SAE-GSO in the Framingham Dataset produced 92.59 %, GBT got 69.16 %, SAE got 86.25%, and NB got 82.37%.\",\"PeriodicalId\":54982,\"journal\":{\"name\":\"Information Technology and Control\",\"volume\":\"42 1\",\"pages\":\"529-540\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Technology and Control\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.5755/j01.itc.52.2.32777\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Technology and Control","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.5755/j01.itc.52.2.32777","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

基于云的物联网框架中的智能医疗系统可用于预测心脏病,改善患者的健康状况并最大限度地降低死亡率。心脏病的预测是一项具有挑战性的工作。心脏病的早期预测可以降低患者患病的风险,实时监测可以避免风险。现有算法的早期预测观点不准确,需要花费大量的时间进行预测,对心脏病的早期预测也不准确。为了克服这些问题,本文提出了一种基于银河群优化(SAE-GSO)算法的稀疏自编码器。利用稀疏编码器预测心脏病,提高预测精度,对稀疏编码器中的稀疏规则参数进行调整,实现了银河群优化算法。提出的工作提高了心脏病的预测率,使错误率最小化,准确性最大化。本文提出的SAE- gso算法在Cleveland数据集上的准确率为92.23%,GBT为65.12%,SAE为87.34%,NB为83.16%。本文提出的SAE- gso算法在Framingham数据集中的准确率为92.59%,GBT为69.16%,SAE为86.25%,NB为82.37%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improved Smart Healthcare System of Cloud-Based IoT Framework for the Prediction of Heart Disease
Smart healthcare systems in the cloud-based IoT framework for the prediction of heart disease improve the patient's health status and minimizes the death rate. The prediction of heart disease is a challenging one. Early prediction of heart disease may reduce the risk of patient illness and monitoring in real-time to avoid the risk. The view of existing algorithms is inaccurate in early prediction which took a lot of time for the prediction and inaccurate early prediction of heart disease. To overcome these issues, this paper proposed a sparse autoencoder with Galactic Swarm Optimization (SAE-GSO) algorithm. A sparse encoder predicts heart disease and enhances the accurate prediction, tuning the parameters of sparsity regularity in the sparse autoencoder, Galactic Swarm optimization algorithm is implemented. The proposed work enhances the prediction rate of heart diseases, minimizing the error rate, and maximizing the accuracy. The accuracy rate of the proposed work of SAE-GSO in the Cleveland Dataset produces got 92.23 %, GBT got 65.12 %, SAE got 87.34%, and NB got 83.16 %. The accuracy rate of the proposed work of SAE-GSO in the Framingham Dataset produced 92.59 %, GBT got 69.16 %, SAE got 86.25%, and NB got 82.37%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information Technology and Control
Information Technology and Control 工程技术-计算机:人工智能
CiteScore
2.70
自引率
9.10%
发文量
36
审稿时长
12 months
期刊介绍: Periodical journal covers a wide field of computer science and control systems related problems including: -Software and hardware engineering; -Management systems engineering; -Information systems and databases; -Embedded systems; -Physical systems modelling and application; -Computer networks and cloud computing; -Data visualization; -Human-computer interface; -Computer graphics, visual analytics, and multimedia systems.
期刊最新文献
Model construction of big data asset management system for digital power grid regulation Melanoma Diagnosis Using Enhanced Faster Region Convolutional Neural Networks Optimized by Artificial Gorilla Troops Algorithm A Scalable and Stacked Ensemble Approach to Improve Intrusion Detection in Clouds Traffic Sign Detection Algorithm Based on Improved Yolox Apply Physical System Model and Computer Algorithm to Identify Osmanthus Fragrans Seed Vigor Based on Hyperspectral Imaging and Convolutional Neural Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1