预测退伍军人创伤后应激障碍严重程度的自我报告早期干预:一种机器学习方法

Priyanka Annapureddy, Md Fitrat Hossain, Thomas Kissane, Wylie Frydrychowicz, Paromita Nitu, Joseph Coelho, Nadiyah Johnson, P. Madiraju, Zeno Franco, Katinka Hooyer, Niharika Jain, M. Flower, Sheikh Iqbal Ahamed
{"title":"预测退伍军人创伤后应激障碍严重程度的自我报告早期干预:一种机器学习方法","authors":"Priyanka Annapureddy, Md Fitrat Hossain, Thomas Kissane, Wylie Frydrychowicz, Paromita Nitu, Joseph Coelho, Nadiyah Johnson, P. Madiraju, Zeno Franco, Katinka Hooyer, Niharika Jain, M. Flower, Sheikh Iqbal Ahamed","doi":"10.1109/IRI49571.2020.00036","DOIUrl":null,"url":null,"abstract":"Early intervention for veterans in crisis represents a crucial area of study to reduce the psychological and health burdens for this population. Traumatic experiences associated with military service are associated with drug and alcohol abuse, suicidality, anger, and disrupted work and family relationships. This project used machine learning (ML) models to integrate data from sociodemographic, self-report baseline symptoms, weekly brief Ecological momentary assessment (EMA) survey of veterans in a community-based 12-week peer support program to predict the discharge PTSD severity level. The ML predictions place the participants into one of the three risk levels: low, medium, and high PCL-5 score. The models were evaluated at different timepoints (weekly intervals) of the program for identifying the earliest week to guide early intervention and reduce veterans’ engagement in risky behaviors. The best results were achieved from a voting classifier with an average f-score of 0.69 at week 4.","PeriodicalId":93159,"journal":{"name":"2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science : IRI 2020 : proceedings : virtual conference, 11-13 August 2020. IEEE International Conference on Information Reuse and Integration (21st : 2...","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Predicting PTSD Severity in Veterans from Self-reports for Early Intervention: A Machine Learning Approach\",\"authors\":\"Priyanka Annapureddy, Md Fitrat Hossain, Thomas Kissane, Wylie Frydrychowicz, Paromita Nitu, Joseph Coelho, Nadiyah Johnson, P. Madiraju, Zeno Franco, Katinka Hooyer, Niharika Jain, M. Flower, Sheikh Iqbal Ahamed\",\"doi\":\"10.1109/IRI49571.2020.00036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Early intervention for veterans in crisis represents a crucial area of study to reduce the psychological and health burdens for this population. Traumatic experiences associated with military service are associated with drug and alcohol abuse, suicidality, anger, and disrupted work and family relationships. This project used machine learning (ML) models to integrate data from sociodemographic, self-report baseline symptoms, weekly brief Ecological momentary assessment (EMA) survey of veterans in a community-based 12-week peer support program to predict the discharge PTSD severity level. The ML predictions place the participants into one of the three risk levels: low, medium, and high PCL-5 score. The models were evaluated at different timepoints (weekly intervals) of the program for identifying the earliest week to guide early intervention and reduce veterans’ engagement in risky behaviors. The best results were achieved from a voting classifier with an average f-score of 0.69 at week 4.\",\"PeriodicalId\":93159,\"journal\":{\"name\":\"2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science : IRI 2020 : proceedings : virtual conference, 11-13 August 2020. IEEE International Conference on Information Reuse and Integration (21st : 2...\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science : IRI 2020 : proceedings : virtual conference, 11-13 August 2020. IEEE International Conference on Information Reuse and Integration (21st : 2...\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRI49571.2020.00036\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science : IRI 2020 : proceedings : virtual conference, 11-13 August 2020. IEEE International Conference on Information Reuse and Integration (21st : 2...","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRI49571.2020.00036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

对处于危机中的退伍军人进行早期干预是减少这一人群心理和健康负担的一个重要研究领域。与服兵役有关的创伤经历与药物和酒精滥用、自杀、愤怒以及工作和家庭关系中断有关。该项目使用机器学习(ML)模型整合社会人口学数据,自我报告基线症状,每周简短的生态瞬时评估(EMA)调查退伍军人在一个基于社区的12周同伴支持计划,以预测退伍后创伤后应激障碍严重程度。ML预测将参与者置于三个风险水平之一:低、中、高PCL-5评分。这些模型在项目的不同时间点(每周间隔)进行评估,以确定最早的一周,指导早期干预,减少退伍军人参与危险行为。投票分类器在第4周的平均f值为0.69,获得了最好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predicting PTSD Severity in Veterans from Self-reports for Early Intervention: A Machine Learning Approach
Early intervention for veterans in crisis represents a crucial area of study to reduce the psychological and health burdens for this population. Traumatic experiences associated with military service are associated with drug and alcohol abuse, suicidality, anger, and disrupted work and family relationships. This project used machine learning (ML) models to integrate data from sociodemographic, self-report baseline symptoms, weekly brief Ecological momentary assessment (EMA) survey of veterans in a community-based 12-week peer support program to predict the discharge PTSD severity level. The ML predictions place the participants into one of the three risk levels: low, medium, and high PCL-5 score. The models were evaluated at different timepoints (weekly intervals) of the program for identifying the earliest week to guide early intervention and reduce veterans’ engagement in risky behaviors. The best results were achieved from a voting classifier with an average f-score of 0.69 at week 4.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Attention-Guided Generative Adversarial Network to Address Atypical Anatomy in Synthetic CT Generation. Natural Language-based Integration of Online Review Datasets for Identification of Sex Trafficking Businesses. An Adaptive and Dynamic Biosensor Epidemic Model for COVID-19 Relating the Empirical Foundations of Attack Generation and Vulnerability Discovery Latent Feature Modelling for Recommender Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1