标题

Q2 Arts and Humanities Kadmos Pub Date : 2020-04-01 DOI:10.1515/kadmos-2020-frontmatter591-2
Marcos Faúndez-Zanuy
{"title":"标题","authors":"Marcos Faúndez-Zanuy","doi":"10.1515/kadmos-2020-frontmatter591-2","DOIUrl":null,"url":null,"abstract":"In this paper we compare a wide band sub-band speech coder using ADPCM schemes with linear prediction against the same scheme with nonlinear prediction based on multi-layer perceptrons. Exhaustive results are presented in each band, and the full signal. Our proposed scheme with non-linear neural net prediction outperforms the linear scheme up to 2 dB in SEGSNR. In addition, we propose a simple method based on a non-linearity in order to obtain a synthetic wide band signal from a narrow band signal.","PeriodicalId":38825,"journal":{"name":"Kadmos","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Title\",\"authors\":\"Marcos Faúndez-Zanuy\",\"doi\":\"10.1515/kadmos-2020-frontmatter591-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we compare a wide band sub-band speech coder using ADPCM schemes with linear prediction against the same scheme with nonlinear prediction based on multi-layer perceptrons. Exhaustive results are presented in each band, and the full signal. Our proposed scheme with non-linear neural net prediction outperforms the linear scheme up to 2 dB in SEGSNR. In addition, we propose a simple method based on a non-linearity in order to obtain a synthetic wide band signal from a narrow band signal.\",\"PeriodicalId\":38825,\"journal\":{\"name\":\"Kadmos\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kadmos\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/kadmos-2020-frontmatter591-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Arts and Humanities\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kadmos","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/kadmos-2020-frontmatter591-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们比较了采用线性预测的ADPCM方案和基于多层感知器的非线性预测方案的宽带子带语音编码器。详尽的结果呈现在每个波段,和完整的信号。我们提出的非线性神经网络预测方案在SEGSNR上优于线性方案高达2 dB。此外,我们还提出了一种基于非线性的简单方法,以便从窄带信号中获得合成的宽带信号。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Title
In this paper we compare a wide band sub-band speech coder using ADPCM schemes with linear prediction against the same scheme with nonlinear prediction based on multi-layer perceptrons. Exhaustive results are presented in each band, and the full signal. Our proposed scheme with non-linear neural net prediction outperforms the linear scheme up to 2 dB in SEGSNR. In addition, we propose a simple method based on a non-linearity in order to obtain a synthetic wide band signal from a narrow band signal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Kadmos
Kadmos Arts and Humanities-Classics
CiteScore
0.40
自引率
0.00%
发文量
0
期刊最新文献
Drei karische Verben A Hieroglyphic seal from the cult centre of the city of Knossos (KN S (4/4) 01) Once again on the evolution of the Anatolian hieroglyphic script Micénico ka-ra-wi-ja ‘vieja(s)’ y la religión micénica Un Phrygien sur l’Agora: redécouverte d’une inscription paléo-phrygienne
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1