人工智能预测心力衰竭

Rashid Ebrahim Al-Mannai, Mohammed Hamad Almerekhi, Mohammed Abdulla Al-Mannai, Mishahira N, K. K. Sadasivuni, H. Yalcin, H. Ouakad, I. Bahadur, S. Al-Maadeed, Asiya Albusaidi
{"title":"人工智能预测心力衰竭","authors":"Rashid Ebrahim Al-Mannai, Mohammed Hamad Almerekhi, Mohammed Abdulla Al-Mannai, Mishahira N, K. K. Sadasivuni, H. Yalcin, H. Ouakad, I. Bahadur, S. Al-Maadeed, Asiya Albusaidi","doi":"10.29117/quarfe.2021.0130","DOIUrl":null,"url":null,"abstract":"Heart Failure is a major chronic disease that is increasing day by day and a great health burden in health care systems world wide. Artificial intelligence (AI) techniques such as machine learning (ML), deep learning (DL), and cognitive computer can play a critical role in the early detection and diagnosis of Heart Failure Detection, as well as outcome prediction and prognosis evaluation. The availability of large datasets from difference sources can be leveraged to build machine learning models that can empower clinicians by providing early warnings and insightful information on the underlying conditions of the patients","PeriodicalId":9295,"journal":{"name":"Building Resilience at Universities: Role of Innovation and Entrepreneurship","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial Intelligence in Predicting Heart Failure\",\"authors\":\"Rashid Ebrahim Al-Mannai, Mohammed Hamad Almerekhi, Mohammed Abdulla Al-Mannai, Mishahira N, K. K. Sadasivuni, H. Yalcin, H. Ouakad, I. Bahadur, S. Al-Maadeed, Asiya Albusaidi\",\"doi\":\"10.29117/quarfe.2021.0130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Heart Failure is a major chronic disease that is increasing day by day and a great health burden in health care systems world wide. Artificial intelligence (AI) techniques such as machine learning (ML), deep learning (DL), and cognitive computer can play a critical role in the early detection and diagnosis of Heart Failure Detection, as well as outcome prediction and prognosis evaluation. The availability of large datasets from difference sources can be leveraged to build machine learning models that can empower clinicians by providing early warnings and insightful information on the underlying conditions of the patients\",\"PeriodicalId\":9295,\"journal\":{\"name\":\"Building Resilience at Universities: Role of Innovation and Entrepreneurship\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Building Resilience at Universities: Role of Innovation and Entrepreneurship\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29117/quarfe.2021.0130\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Building Resilience at Universities: Role of Innovation and Entrepreneurship","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29117/quarfe.2021.0130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

心力衰竭是一种日益增加的主要慢性疾病,是全世界卫生保健系统的一个重大健康负担。机器学习(ML)、深度学习(DL)、认知计算机等人工智能(AI)技术可以在心衰检测的早期发现和诊断,以及结局预测和预后评估中发挥关键作用。来自不同来源的大型数据集的可用性可以用来构建机器学习模型,通过提供早期预警和关于患者潜在状况的深刻信息,可以增强临床医生的能力
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Artificial Intelligence in Predicting Heart Failure
Heart Failure is a major chronic disease that is increasing day by day and a great health burden in health care systems world wide. Artificial intelligence (AI) techniques such as machine learning (ML), deep learning (DL), and cognitive computer can play a critical role in the early detection and diagnosis of Heart Failure Detection, as well as outcome prediction and prognosis evaluation. The availability of large datasets from difference sources can be leveraged to build machine learning models that can empower clinicians by providing early warnings and insightful information on the underlying conditions of the patients
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Investigating the Concomitant Removal of Hydrocarbons and Heavy Metals by highly adapted Bacillus and Pseudomonas strains Exploring QU Health Students' Experiences of Burnout, Anxiety, and Empathy during the COVID-19 Pandemic: A Mixed Method Study Dietary Patterns and Risk of Inflammatory Bowel Disease: Findings from a Case-Control Study Understanding COVID-19-related Burnout in Qatar’s Community Pharmacists using the Job Demands-Resources Theory Experimental Investigations of Gas Kick for Single and Two-Phase Gas-liquid Flow in near Horizontal Wells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1