组织病理图像中核检测的级联图卷积方法

Q3 Computer Science 中国图象图形学报 Pub Date : 2023-03-01 DOI:10.18178/joig.11.1.15-20
Sachin Bahade, Michael Edwards, Xianghua Xie
{"title":"组织病理图像中核检测的级联图卷积方法","authors":"Sachin Bahade, Michael Edwards, Xianghua Xie","doi":"10.18178/joig.11.1.15-20","DOIUrl":null,"url":null,"abstract":"Nuclei detection in histopathology images of cancerous tissue stained with conventional hematoxylin and eosin stain is a challenging task due to the complexity and diversity of cell data. Deep learning techniques have produced encouraging results in the field of nuclei detection, where the main emphasis is on classification and regressionbased methods. Recent research has demonstrated that regression-based techniques outperform classification. In this paper, we propose a classification model based on graph convolutions to classify nuclei, and similar models to detect nuclei using cascaded architecture. With nearly 29,000 annotated nuclei in a large dataset of cancer histology images, we evaluated the Convolutional Neural Network (CNN) and Graph Convolutional Networks (GCN) based approaches. Our findings demonstrate that graph convolutions perform better with a cascaded GCN architecture and are more stable than centre-of-pixel approach. We have compared our twofold evaluation quantitative results with CNN-based models such as Spatial Constrained Convolutional Neural Network (SC-CNN) and Centre-of-Pixel Convolutional Neural Network (CP-CNN). We used two different loss functions, binary cross-entropy and focal loss function, and also investigated the behaviour of CP-CNN and GCN models to observe the effectiveness of CNN and GCN operators. The compared quantitative F1 score of cascaded-GCN shows an improvement of 6% compared to state-of-the-art methods.","PeriodicalId":36336,"journal":{"name":"中国图象图形学报","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Cascaded Graph Convolution Approach for Nuclei Detection in Histopathology Images\",\"authors\":\"Sachin Bahade, Michael Edwards, Xianghua Xie\",\"doi\":\"10.18178/joig.11.1.15-20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nuclei detection in histopathology images of cancerous tissue stained with conventional hematoxylin and eosin stain is a challenging task due to the complexity and diversity of cell data. Deep learning techniques have produced encouraging results in the field of nuclei detection, where the main emphasis is on classification and regressionbased methods. Recent research has demonstrated that regression-based techniques outperform classification. In this paper, we propose a classification model based on graph convolutions to classify nuclei, and similar models to detect nuclei using cascaded architecture. With nearly 29,000 annotated nuclei in a large dataset of cancer histology images, we evaluated the Convolutional Neural Network (CNN) and Graph Convolutional Networks (GCN) based approaches. Our findings demonstrate that graph convolutions perform better with a cascaded GCN architecture and are more stable than centre-of-pixel approach. We have compared our twofold evaluation quantitative results with CNN-based models such as Spatial Constrained Convolutional Neural Network (SC-CNN) and Centre-of-Pixel Convolutional Neural Network (CP-CNN). We used two different loss functions, binary cross-entropy and focal loss function, and also investigated the behaviour of CP-CNN and GCN models to observe the effectiveness of CNN and GCN operators. The compared quantitative F1 score of cascaded-GCN shows an improvement of 6% compared to state-of-the-art methods.\",\"PeriodicalId\":36336,\"journal\":{\"name\":\"中国图象图形学报\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"中国图象图形学报\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.18178/joig.11.1.15-20\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"中国图象图形学报","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.18178/joig.11.1.15-20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 1

摘要

由于细胞数据的复杂性和多样性,用常规苏木精和伊红染色染色的癌组织病理图像中的细胞核检测是一项具有挑战性的任务。深度学习技术在核检测领域产生了令人鼓舞的结果,其中主要强调的是基于分类和回归的方法。最近的研究表明,基于回归的技术优于分类。在本文中,我们提出了一种基于图卷积的分类模型来对核进行分类,并使用类似的模型来使用级联结构来检测核。利用大型癌症组织学图像数据集中近29,000个带注释的细胞核,我们评估了基于卷积神经网络(CNN)和基于图卷积网络(GCN)的方法。我们的研究结果表明,图卷积在级联GCN架构下表现更好,并且比像素中心方法更稳定。我们将我们的双重评估定量结果与基于cnn的模型(如空间约束卷积神经网络(SC-CNN)和像素中心卷积神经网络(CP-CNN))进行了比较。我们使用了二值交叉熵和焦点损失函数两种不同的损失函数,并研究了CP-CNN和GCN模型的行为,以观察CNN和GCN算子的有效性。与最先进的方法相比,级联- gcn的定量F1评分提高了6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cascaded Graph Convolution Approach for Nuclei Detection in Histopathology Images
Nuclei detection in histopathology images of cancerous tissue stained with conventional hematoxylin and eosin stain is a challenging task due to the complexity and diversity of cell data. Deep learning techniques have produced encouraging results in the field of nuclei detection, where the main emphasis is on classification and regressionbased methods. Recent research has demonstrated that regression-based techniques outperform classification. In this paper, we propose a classification model based on graph convolutions to classify nuclei, and similar models to detect nuclei using cascaded architecture. With nearly 29,000 annotated nuclei in a large dataset of cancer histology images, we evaluated the Convolutional Neural Network (CNN) and Graph Convolutional Networks (GCN) based approaches. Our findings demonstrate that graph convolutions perform better with a cascaded GCN architecture and are more stable than centre-of-pixel approach. We have compared our twofold evaluation quantitative results with CNN-based models such as Spatial Constrained Convolutional Neural Network (SC-CNN) and Centre-of-Pixel Convolutional Neural Network (CP-CNN). We used two different loss functions, binary cross-entropy and focal loss function, and also investigated the behaviour of CP-CNN and GCN models to observe the effectiveness of CNN and GCN operators. The compared quantitative F1 score of cascaded-GCN shows an improvement of 6% compared to state-of-the-art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
中国图象图形学报
中国图象图形学报 Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
1.20
自引率
0.00%
发文量
6776
期刊介绍: Journal of Image and Graphics (ISSN 1006-8961, CN 11-3758/TB, CODEN ZTTXFZ) is an authoritative academic journal supervised by the Chinese Academy of Sciences and co-sponsored by the Institute of Space and Astronautical Information Innovation of the Chinese Academy of Sciences (ISIAS), the Chinese Society of Image and Graphics (CSIG), and the Beijing Institute of Applied Physics and Computational Mathematics (BIAPM). The journal integrates high-tech theories, technical methods and industrialisation of applied research results in computer image graphics, and mainly publishes innovative and high-level scientific research papers on basic and applied research in image graphics science and its closely related fields. The form of papers includes reviews, technical reports, project progress, academic news, new technology reviews, new product introduction and industrialisation research. The content covers a wide range of fields such as image analysis and recognition, image understanding and computer vision, computer graphics, virtual reality and augmented reality, system simulation, animation, etc., and theme columns are opened according to the research hotspots and cutting-edge topics. Journal of Image and Graphics reaches a wide range of readers, including scientific and technical personnel, enterprise supervisors, and postgraduates and college students of colleges and universities engaged in the fields of national defence, military, aviation, aerospace, communications, electronics, automotive, agriculture, meteorology, environmental protection, remote sensing, mapping, oil field, construction, transportation, finance, telecommunications, education, medical care, film and television, and art. Journal of Image and Graphics is included in many important domestic and international scientific literature database systems, including EBSCO database in the United States, JST database in Japan, Scopus database in the Netherlands, China Science and Technology Thesis Statistics and Analysis (Annual Research Report), China Science Citation Database (CSCD), China Academic Journal Network Publishing Database (CAJD), and China Academic Journal Network Publishing Database (CAJD). China Science Citation Database (CSCD), China Academic Journals Network Publishing Database (CAJD), China Academic Journal Abstracts, Chinese Science Abstracts (Series A), China Electronic Science Abstracts, Chinese Core Journals Abstracts, Chinese Academic Journals on CD-ROM, and China Academic Journals Comprehensive Evaluation Database.
期刊最新文献
Roselle Pest Detection and Classification Using Threshold and Template Matching Human Action Recognition with Skeleton and Infrared Fusion Model Melanoma Detection Based on SVM Using MATLAB Evaluation of SSD Architecture for Small Size Object Detection: A Case Study on UAV Oil Pipeline MonitoringEvaluation of SSD Architecture for Small Size Object Detection: A Case Study on UAV Oil Pipeline Monitoring Improving Brain Tumor Classification Efficacy through the Application of Feature Selection and Ensemble Classifiers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1