冷适应与酶的分子进化

A. Yamagishi
{"title":"冷适应与酶的分子进化","authors":"A. Yamagishi","doi":"10.11311/JSCTA1974.33.2","DOIUrl":null,"url":null,"abstract":"There are many cold places around the Earth. From the psychrophiles isolated from those environments, cold-adapted enzymes have been isolated. Cold-adapted enzymes have sufficient activity and sufficient substrate-affinity to support the growth, and show low thermo-stability. Artificially cold-adapted enzymes have been obtained by evolutionary engineering from thermophile enzymes. The analysis revealed one of the cold-adaptation mechanisms: the cold-adapted enzymes showed lower enthalpy of substrate-binding thus providing lower activation enthalpy for high activity at low temperature. Some of the cold-adapted enzymes retained high thermal stability of the original thermophile enzyme. The results suggest that it is possible to reconcile high stability with high activity at low temperature. However, the issue needs further investigation. It has been elucidated that life evolved from the hyperthermophilic common ancestor (Commonote). Accordingly, the in vitro evolution experiments for obtaining cold-adapted enzymes from thermophile enzyme are, in a sense, reproducing the evolution of life.","PeriodicalId":19096,"journal":{"name":"Netsu Sokutei","volume":"44 1","pages":"2-9"},"PeriodicalIF":0.0000,"publicationDate":"2006-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Cold Adaptation and Molecular Evolution of Enzyme\",\"authors\":\"A. Yamagishi\",\"doi\":\"10.11311/JSCTA1974.33.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There are many cold places around the Earth. From the psychrophiles isolated from those environments, cold-adapted enzymes have been isolated. Cold-adapted enzymes have sufficient activity and sufficient substrate-affinity to support the growth, and show low thermo-stability. Artificially cold-adapted enzymes have been obtained by evolutionary engineering from thermophile enzymes. The analysis revealed one of the cold-adaptation mechanisms: the cold-adapted enzymes showed lower enthalpy of substrate-binding thus providing lower activation enthalpy for high activity at low temperature. Some of the cold-adapted enzymes retained high thermal stability of the original thermophile enzyme. The results suggest that it is possible to reconcile high stability with high activity at low temperature. However, the issue needs further investigation. It has been elucidated that life evolved from the hyperthermophilic common ancestor (Commonote). Accordingly, the in vitro evolution experiments for obtaining cold-adapted enzymes from thermophile enzyme are, in a sense, reproducing the evolution of life.\",\"PeriodicalId\":19096,\"journal\":{\"name\":\"Netsu Sokutei\",\"volume\":\"44 1\",\"pages\":\"2-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Netsu Sokutei\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11311/JSCTA1974.33.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Netsu Sokutei","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11311/JSCTA1974.33.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

地球上有许多寒冷的地方。从这些环境中分离出来的嗜冷菌中,分离出了适应冷的酶。冷适应酶具有足够的活性和足够的底物亲和力来支持生长,并表现出较低的热稳定性。从嗜热酶的基础上,通过进化工程获得了人工冷适应酶。分析揭示了冷适应的机制之一:冷适应酶具有较低的底物结合焓,从而为低温下的高活性提供了较低的激活焓。一些冷适应酶保留了原嗜热酶的高热稳定性。结果表明,在低温下,高稳定性和高活性是可以调和的。然而,这个问题需要进一步调查。生命是从嗜热的共同祖先(Commonote)进化而来的。因此,从嗜热酶获得冷适应酶的体外进化实验,在某种意义上是在再现生命的进化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cold Adaptation and Molecular Evolution of Enzyme
There are many cold places around the Earth. From the psychrophiles isolated from those environments, cold-adapted enzymes have been isolated. Cold-adapted enzymes have sufficient activity and sufficient substrate-affinity to support the growth, and show low thermo-stability. Artificially cold-adapted enzymes have been obtained by evolutionary engineering from thermophile enzymes. The analysis revealed one of the cold-adaptation mechanisms: the cold-adapted enzymes showed lower enthalpy of substrate-binding thus providing lower activation enthalpy for high activity at low temperature. Some of the cold-adapted enzymes retained high thermal stability of the original thermophile enzyme. The results suggest that it is possible to reconcile high stability with high activity at low temperature. However, the issue needs further investigation. It has been elucidated that life evolved from the hyperthermophilic common ancestor (Commonote). Accordingly, the in vitro evolution experiments for obtaining cold-adapted enzymes from thermophile enzyme are, in a sense, reproducing the evolution of life.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Thermal Stability of Materials in Lithium-Ion Cells Relationship between Vulcanizing Density and Thermal Diffusivity or Thermal Conductivity of Vulcanized Natural Rubber High Temperature Microbalance Technique for the Determination of the Metal Oxides Nonstoichiometry under Controlled Atmosphere Hyper-Mobile Water around Ions, Charged Polymers, and Proteins Observed with High Resolution Microwave Dielectric Spectroscopy Phase Behavior of Thermotropic Cubic Mesogens under Pressure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1