数据分割决策对AIOps解决方案性能影响的实证研究

A. Hassan
{"title":"数据分割决策对AIOps解决方案性能影响的实证研究","authors":"A. Hassan","doi":"10.1145/3447876","DOIUrl":null,"url":null,"abstract":"AIOps (Artificial Intelligence for IT Operations) leverages machine learning models to help practitioners handle the massive data produced during the operations of large-scale systems. However, due to the nature of the operation data, AIOps modeling faces several data splitting-related challenges, such as imbalanced data, data leakage, and concept drift. In this work, we study the data leakage and concept drift challenges in the context of AIOps and evaluate the impact of different modeling decisions on such challenges. Specifically, we perform a case study on two commonly studied AIOps applications: (1) predicting job failures based on trace data from a large-scale cluster environment and (2) predicting disk failures based on disk monitoring data from a large-scale cloud storage environment. First, we observe that the data leakage issue exists in AIOps solutions. Using a time-based splitting of training and validation datasets can significantly reduce such data leakage, making it more appropriate than using a random splitting in the AIOps context. Second, we show that AIOps solutions suffer from concept drift. Periodically updating AIOps models can help mitigate the impact of such concept drift, while the performance benefit and the modeling cost of increasing the update frequency depend largely on the application data and the used models. Our findings encourage future studies and practices on developing AIOps solutions to pay attention to their data-splitting decisions to handle the data leakage and concept drift challenges.","PeriodicalId":7398,"journal":{"name":"ACM Transactions on Software Engineering and Methodology (TOSEM)","volume":"27 1","pages":"1 - 38"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"An Empirical Study of the Impact of Data Splitting Decisions on the Performance of AIOps Solutions\",\"authors\":\"A. Hassan\",\"doi\":\"10.1145/3447876\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AIOps (Artificial Intelligence for IT Operations) leverages machine learning models to help practitioners handle the massive data produced during the operations of large-scale systems. However, due to the nature of the operation data, AIOps modeling faces several data splitting-related challenges, such as imbalanced data, data leakage, and concept drift. In this work, we study the data leakage and concept drift challenges in the context of AIOps and evaluate the impact of different modeling decisions on such challenges. Specifically, we perform a case study on two commonly studied AIOps applications: (1) predicting job failures based on trace data from a large-scale cluster environment and (2) predicting disk failures based on disk monitoring data from a large-scale cloud storage environment. First, we observe that the data leakage issue exists in AIOps solutions. Using a time-based splitting of training and validation datasets can significantly reduce such data leakage, making it more appropriate than using a random splitting in the AIOps context. Second, we show that AIOps solutions suffer from concept drift. Periodically updating AIOps models can help mitigate the impact of such concept drift, while the performance benefit and the modeling cost of increasing the update frequency depend largely on the application data and the used models. Our findings encourage future studies and practices on developing AIOps solutions to pay attention to their data-splitting decisions to handle the data leakage and concept drift challenges.\",\"PeriodicalId\":7398,\"journal\":{\"name\":\"ACM Transactions on Software Engineering and Methodology (TOSEM)\",\"volume\":\"27 1\",\"pages\":\"1 - 38\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Software Engineering and Methodology (TOSEM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3447876\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Software Engineering and Methodology (TOSEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3447876","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

AIOps (IT运营的人工智能)利用机器学习模型来帮助从业者处理大型系统运行过程中产生的大量数据。然而,由于操作数据的性质,AIOps建模面临着一些与数据分裂相关的挑战,如数据不平衡、数据泄漏和概念漂移。在这项工作中,我们研究了AIOps背景下的数据泄漏和概念漂移挑战,并评估了不同建模决策对这些挑战的影响。具体来说,我们对两个常用的AIOps应用程序进行了案例研究:(1)基于来自大规模集群环境的跟踪数据预测作业故障;(2)基于来自大规模云存储环境的磁盘监控数据预测磁盘故障。首先,我们观察到AIOps解决方案中存在数据泄漏问题。使用基于时间的训练和验证数据集分割可以显著减少此类数据泄漏,使其比在AIOps上下文中使用随机分割更合适。其次,我们表明AIOps解决方案受到概念漂移的影响。定期更新AIOps模型可以帮助减轻这种概念漂移的影响,而提高更新频率的性能收益和建模成本在很大程度上取决于应用程序数据和使用的模型。我们的发现鼓励了未来开发AIOps解决方案的研究和实践,以关注其数据分离决策,以处理数据泄漏和概念漂移挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Empirical Study of the Impact of Data Splitting Decisions on the Performance of AIOps Solutions
AIOps (Artificial Intelligence for IT Operations) leverages machine learning models to help practitioners handle the massive data produced during the operations of large-scale systems. However, due to the nature of the operation data, AIOps modeling faces several data splitting-related challenges, such as imbalanced data, data leakage, and concept drift. In this work, we study the data leakage and concept drift challenges in the context of AIOps and evaluate the impact of different modeling decisions on such challenges. Specifically, we perform a case study on two commonly studied AIOps applications: (1) predicting job failures based on trace data from a large-scale cluster environment and (2) predicting disk failures based on disk monitoring data from a large-scale cloud storage environment. First, we observe that the data leakage issue exists in AIOps solutions. Using a time-based splitting of training and validation datasets can significantly reduce such data leakage, making it more appropriate than using a random splitting in the AIOps context. Second, we show that AIOps solutions suffer from concept drift. Periodically updating AIOps models can help mitigate the impact of such concept drift, while the performance benefit and the modeling cost of increasing the update frequency depend largely on the application data and the used models. Our findings encourage future studies and practices on developing AIOps solutions to pay attention to their data-splitting decisions to handle the data leakage and concept drift challenges.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Turnover of Companies in OpenStack: Prevalence and Rationale Super-optimization of Smart Contracts Verification of Programs Sensitive to Heap Layout Assessing and Improving an Evaluation Dataset for Detecting Semantic Code Clones via Deep Learning Guaranteeing Timed Opacity using Parametric Timed Model Checking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1