聚光太阳能电站温跃层储能效能研究进展

Bagré Boubou, Ibrahim Kalawole Muritala, Boukar Makinta, D. Tizane, Tubreoumya Guy Christian, Nebie Jacques, Dabilgou Téré, Béré Antoine, A. Rabani
{"title":"聚光太阳能电站温跃层储能效能研究进展","authors":"Bagré Boubou, Ibrahim Kalawole Muritala, Boukar Makinta, D. Tizane, Tubreoumya Guy Christian, Nebie Jacques, Dabilgou Téré, Béré Antoine, A. Rabani","doi":"10.4236/epe.2021.1310024","DOIUrl":null,"url":null,"abstract":"In this paper, a literature review on thermocline storage performance for Concentrating Solar Power (CSP) plant storage systems has been conducted. The efficiency of materials to store heat depends on the storage process like sensible heat storage, latent heat storage and thermochemical one and also on their properties. This study has been focused on sensible heat storage materials es-pecially thermocline storage system (DMT) using eco-materials which has a high potentiality (35%) to reduce CSP cost. There is a possibility to use natural rocks, industry waste and to develop also materials for a thermocline storage within a bed called packed bed using one tank. The thermal storage materials should have some optimum parameters (particle diameter less than 2 cm and good thermo-physical properties) to achieve better thermal storage performance (thermal cycle efficiency, extraction factor). However, the size and the shape of natural rocks are uncontrollable (big diameter) and can drive to thermocline degradation, catastrophic thermal ratcheting and poor thermal stratification due to the variability of the storage system porosity and the stress on the storage tank wall. Also a better thermal storage efficiency is achievable at low velocity and with good thermo-physical properties of the HTF. The ratio H/D, the height, the porosity, the shape and the position of the tank should be optimized to increase the storage efficiency.","PeriodicalId":62938,"journal":{"name":"能源与动力工程(英文)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Review on Thermocline Storage Effectiveness for Concentrating Solar Power Plant\",\"authors\":\"Bagré Boubou, Ibrahim Kalawole Muritala, Boukar Makinta, D. Tizane, Tubreoumya Guy Christian, Nebie Jacques, Dabilgou Téré, Béré Antoine, A. Rabani\",\"doi\":\"10.4236/epe.2021.1310024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a literature review on thermocline storage performance for Concentrating Solar Power (CSP) plant storage systems has been conducted. The efficiency of materials to store heat depends on the storage process like sensible heat storage, latent heat storage and thermochemical one and also on their properties. This study has been focused on sensible heat storage materials es-pecially thermocline storage system (DMT) using eco-materials which has a high potentiality (35%) to reduce CSP cost. There is a possibility to use natural rocks, industry waste and to develop also materials for a thermocline storage within a bed called packed bed using one tank. The thermal storage materials should have some optimum parameters (particle diameter less than 2 cm and good thermo-physical properties) to achieve better thermal storage performance (thermal cycle efficiency, extraction factor). However, the size and the shape of natural rocks are uncontrollable (big diameter) and can drive to thermocline degradation, catastrophic thermal ratcheting and poor thermal stratification due to the variability of the storage system porosity and the stress on the storage tank wall. Also a better thermal storage efficiency is achievable at low velocity and with good thermo-physical properties of the HTF. The ratio H/D, the height, the porosity, the shape and the position of the tank should be optimized to increase the storage efficiency.\",\"PeriodicalId\":62938,\"journal\":{\"name\":\"能源与动力工程(英文)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"能源与动力工程(英文)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4236/epe.2021.1310024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"能源与动力工程(英文)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/epe.2021.1310024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文对聚光太阳能(CSP)电站储能系统的温跃层储能性能进行了综述。材料的储热效率取决于存储过程,如显热存储、潜热存储和热化学存储,也取决于它们的性质。本研究的重点是显热储存材料,特别是使用生态材料的温跃层储存系统(DMT),它具有很高的降低CSP成本的潜力(35%)。有可能使用天然岩石、工业废料,也有可能开发一种材料用于温跃层储存,这种材料被称为填充床,使用一个储罐。为了获得更好的蓄热性能(热循环效率、萃取系数),蓄热材料应具有一定的优化参数(粒径小于2 cm、热物性好)。而天然岩石的尺寸和形状是不可控的(大直径),由于储层孔隙度的可变性和储层壁面的应力,可导致温跃层退化、灾难性热棘轮和热分层不良。在低速下,HTF具有良好的热物理性能,具有较好的储热效率。应优化储罐的H/D比、高度、孔隙度、形状和位置,以提高储罐效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Review on Thermocline Storage Effectiveness for Concentrating Solar Power Plant
In this paper, a literature review on thermocline storage performance for Concentrating Solar Power (CSP) plant storage systems has been conducted. The efficiency of materials to store heat depends on the storage process like sensible heat storage, latent heat storage and thermochemical one and also on their properties. This study has been focused on sensible heat storage materials es-pecially thermocline storage system (DMT) using eco-materials which has a high potentiality (35%) to reduce CSP cost. There is a possibility to use natural rocks, industry waste and to develop also materials for a thermocline storage within a bed called packed bed using one tank. The thermal storage materials should have some optimum parameters (particle diameter less than 2 cm and good thermo-physical properties) to achieve better thermal storage performance (thermal cycle efficiency, extraction factor). However, the size and the shape of natural rocks are uncontrollable (big diameter) and can drive to thermocline degradation, catastrophic thermal ratcheting and poor thermal stratification due to the variability of the storage system porosity and the stress on the storage tank wall. Also a better thermal storage efficiency is achievable at low velocity and with good thermo-physical properties of the HTF. The ratio H/D, the height, the porosity, the shape and the position of the tank should be optimized to increase the storage efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
922
期刊最新文献
Battery-Free Power Supply for Wireless Sensor Combining Photovoltaic Cells and Supercapacitors Influence of Leachate Recirculation on Landfill Degradation and Biogas Production Analyzing and Exploring a Model for High-Efficiency Perovskite Solar Cells Performance Improvement of CIGS Solar Cell: A Simulation Approach by SCAPS-1D Kinetics and Process Studies of the Potential for Transformation of Biogas to Biomethane and Liquefaction using Cryogenic Liquid for Domestic Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1