通过聚合的单调和凸回归的尖锐oracle界

P. Bellec, A. Tsybakov
{"title":"通过聚合的单调和凸回归的尖锐oracle界","authors":"P. Bellec, A. Tsybakov","doi":"10.5555/2789272.2886809","DOIUrl":null,"url":null,"abstract":"We derive oracle inequalities for the problems of isotonic and convex regression using the combination of $Q$-aggregation procedure and sparsity pattern aggregation. This improves upon the previous results including the oracle inequalities for the constrained least squares estimator. One of the improvements is that our oracle inequalities are sharp, i.e., with leading constant 1. It allows us to obtain bounds for the minimax regret thus accounting for model misspecification, which was not possible based on the previous results. Another improvement is that we obtain oracle inequalities both with high probability and in expectation.","PeriodicalId":14794,"journal":{"name":"J. Mach. Learn. Res.","volume":"49 1","pages":"1879-1892"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"Sharp oracle bounds for monotone and convex regression through aggregation\",\"authors\":\"P. Bellec, A. Tsybakov\",\"doi\":\"10.5555/2789272.2886809\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We derive oracle inequalities for the problems of isotonic and convex regression using the combination of $Q$-aggregation procedure and sparsity pattern aggregation. This improves upon the previous results including the oracle inequalities for the constrained least squares estimator. One of the improvements is that our oracle inequalities are sharp, i.e., with leading constant 1. It allows us to obtain bounds for the minimax regret thus accounting for model misspecification, which was not possible based on the previous results. Another improvement is that we obtain oracle inequalities both with high probability and in expectation.\",\"PeriodicalId\":14794,\"journal\":{\"name\":\"J. Mach. Learn. Res.\",\"volume\":\"49 1\",\"pages\":\"1879-1892\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Mach. Learn. Res.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5555/2789272.2886809\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Mach. Learn. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5555/2789272.2886809","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

摘要

结合$Q$-聚合过程和稀疏模式聚合,导出了等渗和凸回归问题的oracle不等式。这改进了前面的结果,包括约束最小二乘估计的oracle不等式。其中一个改进是我们的oracle不等式是尖锐的,即,以1为前导常数。它允许我们获得最小最大遗憾的界限,从而考虑模型错误规范,这是不可能的,基于以前的结果。另一个改进是我们获得了高概率和期望的oracle不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sharp oracle bounds for monotone and convex regression through aggregation
We derive oracle inequalities for the problems of isotonic and convex regression using the combination of $Q$-aggregation procedure and sparsity pattern aggregation. This improves upon the previous results including the oracle inequalities for the constrained least squares estimator. One of the improvements is that our oracle inequalities are sharp, i.e., with leading constant 1. It allows us to obtain bounds for the minimax regret thus accounting for model misspecification, which was not possible based on the previous results. Another improvement is that we obtain oracle inequalities both with high probability and in expectation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Scalable Computation of Causal Bounds A Unified Framework for Factorizing Distributional Value Functions for Multi-Agent Reinforcement Learning Adaptive False Discovery Rate Control with Privacy Guarantee Fairlearn: Assessing and Improving Fairness of AI Systems Generalization Bounds for Adversarial Contrastive Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1