{"title":"迈向敏捷集成:基于规范的数据对齐","authors":"C. Giossi, D. Maier, K. Tufte, Elliot Gall, M. Barnes","doi":"10.1109/IRI49571.2020.00055","DOIUrl":null,"url":null,"abstract":"Utilizing data sets from multiple domains is a common procedure in scientific research. For example, research on the performance of buildings may require data from multiple sources that lack a singular standard for data reporting. The Building Management System might report data at regular 5minute intervals, whereas an air-quality sensor might capture values only when there has been significant change from the previous value. Many systems exist to help integrate multiple data sources into a single system or interface. However, such systems do not necessarily make it easy to modify an integration plan, for example, to accommodate data exploration, new and changing data sets or shifts in the questions of interest. We propose an agile data-integration system to enable quick and adaptive analysis across many data sets, concentrating initially on the data alignment step: combining data values from multiple time-series based data sets whose time schedules. To this end, we adopt a Domain Specific Language approach where we construct a domain model for alignment, provide a specification language for describing alignments in the model and implement an interpreter for specification in that language. Our implementation exploits a rank-based join in SQL that produces faster alignment times than the commonly suggested method of aligning data sets in a database. We present experiments to demonstrate the advantage of our method and exploit data properties for optimization.","PeriodicalId":93159,"journal":{"name":"2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science : IRI 2020 : proceedings : virtual conference, 11-13 August 2020. IEEE International Conference on Information Reuse and Integration (21st : 2...","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards Agile Integration: Specification-based Data Alignment\",\"authors\":\"C. Giossi, D. Maier, K. Tufte, Elliot Gall, M. Barnes\",\"doi\":\"10.1109/IRI49571.2020.00055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Utilizing data sets from multiple domains is a common procedure in scientific research. For example, research on the performance of buildings may require data from multiple sources that lack a singular standard for data reporting. The Building Management System might report data at regular 5minute intervals, whereas an air-quality sensor might capture values only when there has been significant change from the previous value. Many systems exist to help integrate multiple data sources into a single system or interface. However, such systems do not necessarily make it easy to modify an integration plan, for example, to accommodate data exploration, new and changing data sets or shifts in the questions of interest. We propose an agile data-integration system to enable quick and adaptive analysis across many data sets, concentrating initially on the data alignment step: combining data values from multiple time-series based data sets whose time schedules. To this end, we adopt a Domain Specific Language approach where we construct a domain model for alignment, provide a specification language for describing alignments in the model and implement an interpreter for specification in that language. Our implementation exploits a rank-based join in SQL that produces faster alignment times than the commonly suggested method of aligning data sets in a database. We present experiments to demonstrate the advantage of our method and exploit data properties for optimization.\",\"PeriodicalId\":93159,\"journal\":{\"name\":\"2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science : IRI 2020 : proceedings : virtual conference, 11-13 August 2020. IEEE International Conference on Information Reuse and Integration (21st : 2...\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science : IRI 2020 : proceedings : virtual conference, 11-13 August 2020. IEEE International Conference on Information Reuse and Integration (21st : 2...\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRI49571.2020.00055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science : IRI 2020 : proceedings : virtual conference, 11-13 August 2020. IEEE International Conference on Information Reuse and Integration (21st : 2...","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRI49571.2020.00055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用来自多个领域的数据集是科学研究中的一个常见过程。例如,对建筑物性能的研究可能需要来自多个来源的数据,而这些数据缺乏单一的数据报告标准。楼宇管理系统可能每隔5分钟定期报告数据,而空气质素传感器可能只在与先前的数值有重大变化时才会捕捉数值。有许多系统可以帮助将多个数据源集成到单个系统或接口中。然而,这样的系统不一定使修改集成计划变得容易,例如,以适应数据探索、新的和不断变化的数据集或感兴趣问题的变化。我们提出了一个灵活的数据集成系统,以实现跨许多数据集的快速和自适应分析,最初集中在数据对齐步骤:组合来自多个基于时间序列的数据集的数据值,这些数据集的时间表。为此,我们采用一种领域特定语言方法,在这种方法中,我们构建一个用于对齐的领域模型,提供一种用于描述模型中的对齐的规范语言,并用该语言实现规范的解释器。我们的实现利用SQL中的基于排名的连接,它比通常建议的对齐数据库中的数据集的方法产生更快的对齐时间。我们提出了实验来证明我们的方法的优势,并利用数据属性进行优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards Agile Integration: Specification-based Data Alignment
Utilizing data sets from multiple domains is a common procedure in scientific research. For example, research on the performance of buildings may require data from multiple sources that lack a singular standard for data reporting. The Building Management System might report data at regular 5minute intervals, whereas an air-quality sensor might capture values only when there has been significant change from the previous value. Many systems exist to help integrate multiple data sources into a single system or interface. However, such systems do not necessarily make it easy to modify an integration plan, for example, to accommodate data exploration, new and changing data sets or shifts in the questions of interest. We propose an agile data-integration system to enable quick and adaptive analysis across many data sets, concentrating initially on the data alignment step: combining data values from multiple time-series based data sets whose time schedules. To this end, we adopt a Domain Specific Language approach where we construct a domain model for alignment, provide a specification language for describing alignments in the model and implement an interpreter for specification in that language. Our implementation exploits a rank-based join in SQL that produces faster alignment times than the commonly suggested method of aligning data sets in a database. We present experiments to demonstrate the advantage of our method and exploit data properties for optimization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Attention-Guided Generative Adversarial Network to Address Atypical Anatomy in Synthetic CT Generation. Natural Language-based Integration of Online Review Datasets for Identification of Sex Trafficking Businesses. An Adaptive and Dynamic Biosensor Epidemic Model for COVID-19 Relating the Empirical Foundations of Attack Generation and Vulnerability Discovery Latent Feature Modelling for Recommender Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1