印度恰蒂斯加尔邦莱格尔Tamnar地区地下水氟化物污染的解释

IF 1.6 4区 地球科学 Q3 GEOSCIENCES, MULTIDISCIPLINARY Earth Interactions Pub Date : 2023-08-22 DOI:10.3390/earth4030033
M. K. Beg, Navneet Kumar, S. Srivastava, E. Carranza
{"title":"印度恰蒂斯加尔邦莱格尔Tamnar地区地下水氟化物污染的解释","authors":"M. K. Beg, Navneet Kumar, S. Srivastava, E. Carranza","doi":"10.3390/earth4030033","DOIUrl":null,"url":null,"abstract":"A high concentration of fluoride (F−) in drinking water is harmful and is a serious concern worldwide due to its toxicity and accumulation in the human body. There are various sources of fluoride (F−) and divergent pathways to enter into groundwater sources. High F− incidence in groundwater was reported in Raigarh district of Central India in a sedimentary (Gondwana) aquifer system. The present study investigates the hydrogeochemistry of groundwater in the Tamnar area of Raigarh district to understand the plausible cause(s) of high F− concentration, especially the source(s) and underlying geochemical processes. Groundwater samples, representing pre-monsoon (N = 83), monsoon (N = 20), and post-monsoon (N = 81) seasons, and rock samples (N = 4) were collected and analyzed. The study revealed that (i) groundwater with high F− concentration occurs in the Barakar Formation, which has a litho-assemblage of feldspathic sandstones, shales, and coal, (ii) high F− concentration is mainly associated with Na-Ca-HCO3, Na-Ca-Mg-HCO3, and Na-Mg-Ca-HCO3 types of groundwater, (iii) the F− concentration increases as the ratio of Na+ and Ca2+ increases (Na+: Ca2+, concentration in meq/l), (iv) F− has significant positive correlation with Na+ and SiO2, and significant negative correlation with Ca2+, Mg2+, HCO3−, and TH, and (v) high F− concentration in groundwater is found in deeper wells. Micas and clay minerals, occurring in the feldspathic sandstones and intercalated shale/clay/coal beds, possibly form an additional source for releasing F− in groundwater. Feldspar dissolution coupled with anion (OH− or F−) and cation (Ca2+ for Na+) exchange are probably the dominant geochemical processes taking place in the study area. The higher residence time and temperature of groundwater in deeper aquifers also play a role in enhancing the dissolution of fluorine-bearing minerals. Systematic hydrogeochemical investigations are recommended in the surrounding area having a similar geologic setting in view of the potential health risk to a large population.","PeriodicalId":51020,"journal":{"name":"Earth Interactions","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interpretation of Fluoride Groundwater Contamination in Tamnar Area, Raigarh, Chhattisgarh, India\",\"authors\":\"M. K. Beg, Navneet Kumar, S. Srivastava, E. Carranza\",\"doi\":\"10.3390/earth4030033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A high concentration of fluoride (F−) in drinking water is harmful and is a serious concern worldwide due to its toxicity and accumulation in the human body. There are various sources of fluoride (F−) and divergent pathways to enter into groundwater sources. High F− incidence in groundwater was reported in Raigarh district of Central India in a sedimentary (Gondwana) aquifer system. The present study investigates the hydrogeochemistry of groundwater in the Tamnar area of Raigarh district to understand the plausible cause(s) of high F− concentration, especially the source(s) and underlying geochemical processes. Groundwater samples, representing pre-monsoon (N = 83), monsoon (N = 20), and post-monsoon (N = 81) seasons, and rock samples (N = 4) were collected and analyzed. The study revealed that (i) groundwater with high F− concentration occurs in the Barakar Formation, which has a litho-assemblage of feldspathic sandstones, shales, and coal, (ii) high F− concentration is mainly associated with Na-Ca-HCO3, Na-Ca-Mg-HCO3, and Na-Mg-Ca-HCO3 types of groundwater, (iii) the F− concentration increases as the ratio of Na+ and Ca2+ increases (Na+: Ca2+, concentration in meq/l), (iv) F− has significant positive correlation with Na+ and SiO2, and significant negative correlation with Ca2+, Mg2+, HCO3−, and TH, and (v) high F− concentration in groundwater is found in deeper wells. Micas and clay minerals, occurring in the feldspathic sandstones and intercalated shale/clay/coal beds, possibly form an additional source for releasing F− in groundwater. Feldspar dissolution coupled with anion (OH− or F−) and cation (Ca2+ for Na+) exchange are probably the dominant geochemical processes taking place in the study area. The higher residence time and temperature of groundwater in deeper aquifers also play a role in enhancing the dissolution of fluorine-bearing minerals. Systematic hydrogeochemical investigations are recommended in the surrounding area having a similar geologic setting in view of the potential health risk to a large population.\",\"PeriodicalId\":51020,\"journal\":{\"name\":\"Earth Interactions\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth Interactions\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.3390/earth4030033\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth Interactions","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/earth4030033","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

饮用水中高浓度的氟化物(F−)是有害的,由于其毒性和在人体内的蓄积,是全世界关注的一个严重问题。氟化物(F−)的来源多种多样,进入地下水水源的途径也不同。据报道,在印度中部的Raigarh地区的沉积(Gondwana)含水层系统中,地下水中F -的发生率很高。本文通过对莱格尔地区塔纳尔地区地下水水文地球化学的研究,探讨了该地区地下水高氟的可能原因,特别是其来源和潜在的地球化学过程。收集和分析了季风前(N = 83)、季风期(N = 20)和季风后(N = 81) 3个季节的地下水样品和4个季节的岩石样品。研究表明:(1)高F−浓度地下水赋存于Barakar组,具有长石砂岩、页岩和煤的岩石组合;(2)高F−浓度主要与Na- ca - hco3、Na- ca - mg - hco3和Na- mg - ca - hco3类型的地下水有关;(3)F−浓度随Na+和Ca2+比值的增加而增加(Na+:Ca2+(单位:meq/l)、(iv) F−与Na+、SiO2呈显著正相关,与Ca2+、Mg2+、HCO3−、TH呈显著负相关;(v)地下水中F−浓度越深越高。云母和粘土矿物存在于长石砂岩和夹层页岩/粘土/煤层中,可能是地下水中F−释放的另一个来源。长石溶解与阴离子(OH−或F−)和阳离子(Ca2+代替Na+)交换可能是研究区主要的地球化学过程。地下水在较深含水层中停留的时间和温度较高,对含氟矿物的溶解也有促进作用。鉴于对大量人口的潜在健康风险,建议在具有类似地质环境的周边地区进行系统的水文地球化学调查。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Interpretation of Fluoride Groundwater Contamination in Tamnar Area, Raigarh, Chhattisgarh, India
A high concentration of fluoride (F−) in drinking water is harmful and is a serious concern worldwide due to its toxicity and accumulation in the human body. There are various sources of fluoride (F−) and divergent pathways to enter into groundwater sources. High F− incidence in groundwater was reported in Raigarh district of Central India in a sedimentary (Gondwana) aquifer system. The present study investigates the hydrogeochemistry of groundwater in the Tamnar area of Raigarh district to understand the plausible cause(s) of high F− concentration, especially the source(s) and underlying geochemical processes. Groundwater samples, representing pre-monsoon (N = 83), monsoon (N = 20), and post-monsoon (N = 81) seasons, and rock samples (N = 4) were collected and analyzed. The study revealed that (i) groundwater with high F− concentration occurs in the Barakar Formation, which has a litho-assemblage of feldspathic sandstones, shales, and coal, (ii) high F− concentration is mainly associated with Na-Ca-HCO3, Na-Ca-Mg-HCO3, and Na-Mg-Ca-HCO3 types of groundwater, (iii) the F− concentration increases as the ratio of Na+ and Ca2+ increases (Na+: Ca2+, concentration in meq/l), (iv) F− has significant positive correlation with Na+ and SiO2, and significant negative correlation with Ca2+, Mg2+, HCO3−, and TH, and (v) high F− concentration in groundwater is found in deeper wells. Micas and clay minerals, occurring in the feldspathic sandstones and intercalated shale/clay/coal beds, possibly form an additional source for releasing F− in groundwater. Feldspar dissolution coupled with anion (OH− or F−) and cation (Ca2+ for Na+) exchange are probably the dominant geochemical processes taking place in the study area. The higher residence time and temperature of groundwater in deeper aquifers also play a role in enhancing the dissolution of fluorine-bearing minerals. Systematic hydrogeochemical investigations are recommended in the surrounding area having a similar geologic setting in view of the potential health risk to a large population.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Earth Interactions
Earth Interactions 地学-地球科学综合
CiteScore
2.70
自引率
5.00%
发文量
16
审稿时长
>12 weeks
期刊介绍: Publishes research on the interactions among the atmosphere, hydrosphere, biosphere, cryosphere, and lithosphere, including, but not limited to, research on human impacts, such as land cover change, irrigation, dams/reservoirs, urbanization, pollution, and landslides. Earth Interactions is a joint publication of the American Meteorological Society, American Geophysical Union, and American Association of Geographers.
期刊最新文献
Runoff variability in the Truckee-Carson River basin from tree rings and a water balance model Effects of payment for ecosystem services and tourism on conservation and development: Trade-off or synergistic? The Role of Climate Change in the Proliferation of Freshwater Harmful Algal Blooms in Inland Waterbodies of the United States Geographic Analysis of the Vulnerability of U.S. Lakes to Cyanobacterial Blooms under Future Climate Decadal variability in spring sea-ice concentration linked to summer temperature and NDVI on the Yukon-Kuskokwim Delta
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1