伏立康唑10mg /mL眼液90天的稳定性

Aasfa Khan, Arnaud Venet, J. Bernadou, Sylvie Cresto, V. Servant, H. Boulestreau, F. Xuereb, S. Crauste-Manciet
{"title":"伏立康唑10mg /mL眼液90天的稳定性","authors":"Aasfa Khan, Arnaud Venet, J. Bernadou, Sylvie Cresto, V. Servant, H. Boulestreau, F. Xuereb, S. Crauste-Manciet","doi":"10.1515/pthp-2021-0010","DOIUrl":null,"url":null,"abstract":"Abstract Objectives Fungal keratitis is a rare but severe cause of infectious keratitis and can lead to blindness. To cure fungal keratitis, antifungal like voriconazole eye drops must be immediately administered. As no brand is available on the market, voriconazole ophthalmic solution is compounded in hospital pharmacies using voriconazole powder for intravenous infusion. The aims of our study were to both assess the physico-chemical and microbiological stability of eye drop solutions stored at +2 to 8 °C. Two different High-Density-Polyethylene (HDPE) eye drop dispensing containers were assessed, one with a sterility preserving cap Novelia®(Nemera) and the other without sterility preserving cap both provided by CAT laboratory. In addition microbiological quality was assessed during 15 days simulated patient use. Methods Multiple batches of voriconazole 10 mg/mL eye drops were prepared and stored at +2 to 8 °C to study their stability over 90 days. All analyses were performed in triplicate. Physical stability was determined, pH determination, osmolarity measurement, and a particle count test was also performed. A high performance liquid chromatography (HPLC-UV) stability indicating method was used to determine chemical stability of the ophthalmic solution over 90 days of storage. For microbiological stability, a sterility test was performed using closed membrane filtration method (Steritest®, Merck Millipore) at D0, D90 and D90+15 days after simulated administration of eye drops (D90+15). Results For both containers, no variation of visual aspect, pH, osmolality, particle count and final concentration were observed. No microbiological growth was observed after 90 days of storage. At the end of the simulated administration period (D+15), unconstant microbiological growth was only observed in HDPE vials without sterility preserving cap, whereas HDPE vials with a sterility preserving cap Novelia®(Nemera) remained sterile. Conclusions Voriconazole 10 mg/mL ophtalmic solution was stable during 90 days at +2 to 8 °C in lightproof HDPE vials without sterility preserving cap and HDPE vials with a sterility preserving cap Novelia®(Nemera). However, vials with classical cap which are not airtight systems, may microbiologically contaminated during patient’s use than vials with Novelia® cap thanks to their innovative valve system.","PeriodicalId":19802,"journal":{"name":"Pharmaceutical Technology in Hospital Pharmacy","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability of voriconazole 10 mg/mL ophthalmic solution during 90 days\",\"authors\":\"Aasfa Khan, Arnaud Venet, J. Bernadou, Sylvie Cresto, V. Servant, H. Boulestreau, F. Xuereb, S. Crauste-Manciet\",\"doi\":\"10.1515/pthp-2021-0010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Objectives Fungal keratitis is a rare but severe cause of infectious keratitis and can lead to blindness. To cure fungal keratitis, antifungal like voriconazole eye drops must be immediately administered. As no brand is available on the market, voriconazole ophthalmic solution is compounded in hospital pharmacies using voriconazole powder for intravenous infusion. The aims of our study were to both assess the physico-chemical and microbiological stability of eye drop solutions stored at +2 to 8 °C. Two different High-Density-Polyethylene (HDPE) eye drop dispensing containers were assessed, one with a sterility preserving cap Novelia®(Nemera) and the other without sterility preserving cap both provided by CAT laboratory. In addition microbiological quality was assessed during 15 days simulated patient use. Methods Multiple batches of voriconazole 10 mg/mL eye drops were prepared and stored at +2 to 8 °C to study their stability over 90 days. All analyses were performed in triplicate. Physical stability was determined, pH determination, osmolarity measurement, and a particle count test was also performed. A high performance liquid chromatography (HPLC-UV) stability indicating method was used to determine chemical stability of the ophthalmic solution over 90 days of storage. For microbiological stability, a sterility test was performed using closed membrane filtration method (Steritest®, Merck Millipore) at D0, D90 and D90+15 days after simulated administration of eye drops (D90+15). Results For both containers, no variation of visual aspect, pH, osmolality, particle count and final concentration were observed. No microbiological growth was observed after 90 days of storage. At the end of the simulated administration period (D+15), unconstant microbiological growth was only observed in HDPE vials without sterility preserving cap, whereas HDPE vials with a sterility preserving cap Novelia®(Nemera) remained sterile. Conclusions Voriconazole 10 mg/mL ophtalmic solution was stable during 90 days at +2 to 8 °C in lightproof HDPE vials without sterility preserving cap and HDPE vials with a sterility preserving cap Novelia®(Nemera). However, vials with classical cap which are not airtight systems, may microbiologically contaminated during patient’s use than vials with Novelia® cap thanks to their innovative valve system.\",\"PeriodicalId\":19802,\"journal\":{\"name\":\"Pharmaceutical Technology in Hospital Pharmacy\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutical Technology in Hospital Pharmacy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/pthp-2021-0010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Technology in Hospital Pharmacy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/pthp-2021-0010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要目的真菌性角膜炎是一种罕见但严重的感染性角膜炎,可导致失明。要治疗真菌性角膜炎,必须立即使用伏立康唑等抗真菌滴眼液。由于市场上没有品牌,伏立康唑眼药水在医院药房采用伏立康唑粉进行静脉滴注配制。我们的研究目的是评估眼药水溶液在+2至8°C下储存的物理化学和微生物稳定性。对两种不同的高密度聚乙烯(HDPE)滴眼液配药容器进行了评估,其中一种容器带有无菌保护帽Novelia®(Nemera),另一种容器没有无菌保护帽,均由CAT实验室提供。此外,在15天的模拟患者使用期间评估微生物质量。方法制备伏立康唑10 mg/mL滴眼液,多批次+2 ~ 8℃保存,观察其90 d的稳定性。所有分析均为三份。测定了物理稳定性,测定了pH值,测定了渗透压,并进行了颗粒计数试验。采用高效液相色谱-紫外(HPLC-UV)稳定性指示法测定该眼液90 d内的化学稳定性。为了微生物稳定性,在模拟滴眼液给药后(D90+15)的D0、D90和D90+15天,采用封闭膜过滤法(Steritest®,默克Millipore)进行无菌试验。结果两种容器的外观、pH、渗透压、颗粒数和终浓度均无变化。贮藏90天后未见微生物生长。在模拟给药期结束时(D+15),仅在没有无菌保存帽的HDPE瓶中观察到不稳定的微生物生长,而带有无菌保存帽的HDPE瓶Novelia®(Nemera)保持无菌。结论伏立康唑10mg /mL眼用溶液在+2 ~ 8℃条件下,无无菌盖的避光HDPE瓶和带无菌盖的Novelia®(Nemera) HDPE瓶在90 d内保持稳定。然而,由于其创新的阀门系统,与Novelia®瓶盖相比,经典瓶盖不是密闭系统的小瓶在患者使用过程中可能受到微生物污染。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Stability of voriconazole 10 mg/mL ophthalmic solution during 90 days
Abstract Objectives Fungal keratitis is a rare but severe cause of infectious keratitis and can lead to blindness. To cure fungal keratitis, antifungal like voriconazole eye drops must be immediately administered. As no brand is available on the market, voriconazole ophthalmic solution is compounded in hospital pharmacies using voriconazole powder for intravenous infusion. The aims of our study were to both assess the physico-chemical and microbiological stability of eye drop solutions stored at +2 to 8 °C. Two different High-Density-Polyethylene (HDPE) eye drop dispensing containers were assessed, one with a sterility preserving cap Novelia®(Nemera) and the other without sterility preserving cap both provided by CAT laboratory. In addition microbiological quality was assessed during 15 days simulated patient use. Methods Multiple batches of voriconazole 10 mg/mL eye drops were prepared and stored at +2 to 8 °C to study their stability over 90 days. All analyses were performed in triplicate. Physical stability was determined, pH determination, osmolarity measurement, and a particle count test was also performed. A high performance liquid chromatography (HPLC-UV) stability indicating method was used to determine chemical stability of the ophthalmic solution over 90 days of storage. For microbiological stability, a sterility test was performed using closed membrane filtration method (Steritest®, Merck Millipore) at D0, D90 and D90+15 days after simulated administration of eye drops (D90+15). Results For both containers, no variation of visual aspect, pH, osmolality, particle count and final concentration were observed. No microbiological growth was observed after 90 days of storage. At the end of the simulated administration period (D+15), unconstant microbiological growth was only observed in HDPE vials without sterility preserving cap, whereas HDPE vials with a sterility preserving cap Novelia®(Nemera) remained sterile. Conclusions Voriconazole 10 mg/mL ophtalmic solution was stable during 90 days at +2 to 8 °C in lightproof HDPE vials without sterility preserving cap and HDPE vials with a sterility preserving cap Novelia®(Nemera). However, vials with classical cap which are not airtight systems, may microbiologically contaminated during patient’s use than vials with Novelia® cap thanks to their innovative valve system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
7
审稿时长
12 weeks
期刊最新文献
Physicochemical stability of urea-containing Mitomycin C preparations in glass vials (1.0 mg/mL) and plastic syringes (2.0, 0.4, 0.2 mg/mL) Physicochemical stability of durvalumab (Imfinzi®) concentrate for solution in original vials after first opening Semi-automatic COVID-19 vaccine preparation for upscaling of vaccination: a descriptive study Assessment of the relevance of osmolality measurement as a criterion for the stability of solutions Use of a liquid chromatography-tandem mass spectrometry method to assess the concentration of epinephrine, norepinephrine, and phenylephrine stored in plastic syringes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1