基于优化零件混合和级联可变形形状模型的无姿态面部地标拟合

Xiang Yu, Junzhou Huang, Shaoting Zhang, Wang Yan, Dimitris N. Metaxas
{"title":"基于优化零件混合和级联可变形形状模型的无姿态面部地标拟合","authors":"Xiang Yu, Junzhou Huang, Shaoting Zhang, Wang Yan, Dimitris N. Metaxas","doi":"10.1109/ICCV.2013.244","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of facial landmark localization and tracking from a single camera. We present a two-stage cascaded deformable shape model to effectively and efficiently localize facial landmarks with large head pose variations. For face detection, we propose a group sparse learning method to automatically select the most salient facial landmarks. By introducing 3D face shape model, we use procrustes analysis to achieve pose-free facial landmark initialization. For deformation, the first step uses mean-shift local search with constrained local model to rapidly approach the global optimum. The second step uses component-wise active contours to discriminatively refine the subtle shape variation. Our framework can simultaneously handle face detection, pose-free landmark localization and tracking in real time. Extensive experiments are conducted on both laboratory environmental face databases and face-in-the-wild databases. All results demonstrate that our approach has certain advantages over state-of-the-art methods in handling pose variations.","PeriodicalId":6351,"journal":{"name":"2013 IEEE International Conference on Computer Vision","volume":"22 1","pages":"1944-1951"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"251","resultStr":"{\"title\":\"Pose-Free Facial Landmark Fitting via Optimized Part Mixtures and Cascaded Deformable Shape Model\",\"authors\":\"Xiang Yu, Junzhou Huang, Shaoting Zhang, Wang Yan, Dimitris N. Metaxas\",\"doi\":\"10.1109/ICCV.2013.244\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the problem of facial landmark localization and tracking from a single camera. We present a two-stage cascaded deformable shape model to effectively and efficiently localize facial landmarks with large head pose variations. For face detection, we propose a group sparse learning method to automatically select the most salient facial landmarks. By introducing 3D face shape model, we use procrustes analysis to achieve pose-free facial landmark initialization. For deformation, the first step uses mean-shift local search with constrained local model to rapidly approach the global optimum. The second step uses component-wise active contours to discriminatively refine the subtle shape variation. Our framework can simultaneously handle face detection, pose-free landmark localization and tracking in real time. Extensive experiments are conducted on both laboratory environmental face databases and face-in-the-wild databases. All results demonstrate that our approach has certain advantages over state-of-the-art methods in handling pose variations.\",\"PeriodicalId\":6351,\"journal\":{\"name\":\"2013 IEEE International Conference on Computer Vision\",\"volume\":\"22 1\",\"pages\":\"1944-1951\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"251\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2013.244\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2013.244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 251

摘要

本文研究了单摄像头下的人脸标记定位与跟踪问题。我们提出了一种两阶段级联的可变形形状模型,以有效地定位头部姿态变化较大的面部标志。在人脸检测方面,我们提出了一种组稀疏学习方法来自动选择最显著的人脸标志。通过引入三维脸型模型,利用procrustes分析实现无姿态面部地标初始化。对于变形,第一步采用约束局部模型的均值偏移局部搜索,快速逼近全局最优解。第二步使用组件智能活动轮廓来区分细化细微的形状变化。我们的框架可以同时处理人脸检测、无姿态地标定位和实时跟踪。在实验室环境人脸数据库和野外人脸数据库上进行了大量的实验。所有结果都表明,我们的方法在处理姿势变化方面比最先进的方法具有一定的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pose-Free Facial Landmark Fitting via Optimized Part Mixtures and Cascaded Deformable Shape Model
This paper addresses the problem of facial landmark localization and tracking from a single camera. We present a two-stage cascaded deformable shape model to effectively and efficiently localize facial landmarks with large head pose variations. For face detection, we propose a group sparse learning method to automatically select the most salient facial landmarks. By introducing 3D face shape model, we use procrustes analysis to achieve pose-free facial landmark initialization. For deformation, the first step uses mean-shift local search with constrained local model to rapidly approach the global optimum. The second step uses component-wise active contours to discriminatively refine the subtle shape variation. Our framework can simultaneously handle face detection, pose-free landmark localization and tracking in real time. Extensive experiments are conducted on both laboratory environmental face databases and face-in-the-wild databases. All results demonstrate that our approach has certain advantages over state-of-the-art methods in handling pose variations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PixelTrack: A Fast Adaptive Algorithm for Tracking Non-rigid Objects A General Dense Image Matching Framework Combining Direct and Feature-Based Costs Latent Space Sparse Subspace Clustering Non-convex P-Norm Projection for Robust Sparsity Hierarchical Joint Max-Margin Learning of Mid and Top Level Representations for Visual Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1