João Bispo, Pedro Pinto, Ricardo Nobre, Tiago Carvalho, João MP Cardoso, P. Diniz
{"title":"MATISSE MATLAB编译器","authors":"João Bispo, Pedro Pinto, Ricardo Nobre, Tiago Carvalho, João MP Cardoso, P. Diniz","doi":"10.1109/INDIN.2013.6622952","DOIUrl":null,"url":null,"abstract":"This paper describes MATISSE, a MATLAB to C compiler targeting embedded systems that is based on Strategic and Aspect-Oriented Programming concepts. MATISSE takes as input: (1) MATLAB code and (2) LARA aspects related to types and shapes, code insertion/removal, and specialization based directives defining default variable values. In this paper we also illustrate the use of MATISSE in leveraging data types and shapes to generate customized C code suitable for high-level hardware synthesis tools. The preliminary experimental results presented here reveal the described approach to yield performance results for the resulting hardware and software references implementations that are comparable in terms of performance with hand-crafted solutions but derived automatically at a fraction of the cost.","PeriodicalId":6312,"journal":{"name":"2013 11th IEEE International Conference on Industrial Informatics (INDIN)","volume":"6 1","pages":"602-608"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"The MATISSE MATLAB compiler\",\"authors\":\"João Bispo, Pedro Pinto, Ricardo Nobre, Tiago Carvalho, João MP Cardoso, P. Diniz\",\"doi\":\"10.1109/INDIN.2013.6622952\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes MATISSE, a MATLAB to C compiler targeting embedded systems that is based on Strategic and Aspect-Oriented Programming concepts. MATISSE takes as input: (1) MATLAB code and (2) LARA aspects related to types and shapes, code insertion/removal, and specialization based directives defining default variable values. In this paper we also illustrate the use of MATISSE in leveraging data types and shapes to generate customized C code suitable for high-level hardware synthesis tools. The preliminary experimental results presented here reveal the described approach to yield performance results for the resulting hardware and software references implementations that are comparable in terms of performance with hand-crafted solutions but derived automatically at a fraction of the cost.\",\"PeriodicalId\":6312,\"journal\":{\"name\":\"2013 11th IEEE International Conference on Industrial Informatics (INDIN)\",\"volume\":\"6 1\",\"pages\":\"602-608\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 11th IEEE International Conference on Industrial Informatics (INDIN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INDIN.2013.6622952\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 11th IEEE International Conference on Industrial Informatics (INDIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDIN.2013.6622952","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This paper describes MATISSE, a MATLAB to C compiler targeting embedded systems that is based on Strategic and Aspect-Oriented Programming concepts. MATISSE takes as input: (1) MATLAB code and (2) LARA aspects related to types and shapes, code insertion/removal, and specialization based directives defining default variable values. In this paper we also illustrate the use of MATISSE in leveraging data types and shapes to generate customized C code suitable for high-level hardware synthesis tools. The preliminary experimental results presented here reveal the described approach to yield performance results for the resulting hardware and software references implementations that are comparable in terms of performance with hand-crafted solutions but derived automatically at a fraction of the cost.