{"title":"金属/金属氧化物基纳米复合材料/纳米杂化材料对砷的修复:地下水污染情况、实际挑战和未来展望","authors":"Ajay Kumar, H. Joshi, Ashok Kumar","doi":"10.1080/15422119.2020.1744649","DOIUrl":null,"url":null,"abstract":"ABSTRACT Arsenic is a global concern as a groundwater contaminant due to its severe health consequences. Its removal employing nano adsorbents in both ex-situ and in-situ modes has gained attention among the scientific community from the past two and a half decades. Nanotechnology-based water treatment systems are a logical choice concerning resources and energy efficiency. The literature contains many cases in which several nanoadsorbents were used for arsenic removal. This review attempts to classify a variety of used nanoadsorbents according to their polymorphic structure and stability features, assessing the nature and modality of the bench-scale studies, identifying the removal mechanisms, and exploring further approaches for potential field-scale applications. A methodology to calculate the production cost of nanoadsorbents at a laboratory scale is also proposed.","PeriodicalId":21744,"journal":{"name":"Separation & Purification Reviews","volume":"27 1","pages":"283 - 314"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Remediation of Arsenic by Metal/ Metal Oxide Based Nanocomposites/ Nanohybrids: Contamination Scenario in Groundwater, Practical Challenges, and Future Perspectives\",\"authors\":\"Ajay Kumar, H. Joshi, Ashok Kumar\",\"doi\":\"10.1080/15422119.2020.1744649\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Arsenic is a global concern as a groundwater contaminant due to its severe health consequences. Its removal employing nano adsorbents in both ex-situ and in-situ modes has gained attention among the scientific community from the past two and a half decades. Nanotechnology-based water treatment systems are a logical choice concerning resources and energy efficiency. The literature contains many cases in which several nanoadsorbents were used for arsenic removal. This review attempts to classify a variety of used nanoadsorbents according to their polymorphic structure and stability features, assessing the nature and modality of the bench-scale studies, identifying the removal mechanisms, and exploring further approaches for potential field-scale applications. A methodology to calculate the production cost of nanoadsorbents at a laboratory scale is also proposed.\",\"PeriodicalId\":21744,\"journal\":{\"name\":\"Separation & Purification Reviews\",\"volume\":\"27 1\",\"pages\":\"283 - 314\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Separation & Purification Reviews\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/15422119.2020.1744649\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separation & Purification Reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15422119.2020.1744649","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Remediation of Arsenic by Metal/ Metal Oxide Based Nanocomposites/ Nanohybrids: Contamination Scenario in Groundwater, Practical Challenges, and Future Perspectives
ABSTRACT Arsenic is a global concern as a groundwater contaminant due to its severe health consequences. Its removal employing nano adsorbents in both ex-situ and in-situ modes has gained attention among the scientific community from the past two and a half decades. Nanotechnology-based water treatment systems are a logical choice concerning resources and energy efficiency. The literature contains many cases in which several nanoadsorbents were used for arsenic removal. This review attempts to classify a variety of used nanoadsorbents according to their polymorphic structure and stability features, assessing the nature and modality of the bench-scale studies, identifying the removal mechanisms, and exploring further approaches for potential field-scale applications. A methodology to calculate the production cost of nanoadsorbents at a laboratory scale is also proposed.