基于元数据的YouTube视频多标签

Neha Agarwal, Rajat Gupta, S. Singh, V. Saxena
{"title":"基于元数据的YouTube视频多标签","authors":"Neha Agarwal, Rajat Gupta, S. Singh, V. Saxena","doi":"10.1109/CONFLUENCE.2017.7943219","DOIUrl":null,"url":null,"abstract":"It is a challenging task to find video of interests on YouTube due to huge size of its repository. Multiple labels, if provided, can make search faster. This paper describes a two level automated mechanism to generate multiple labels for videos using their text based meta-data features. The first level of classification categorize videos into 5 harassment categories and then a second level generate a positive or negative label i.e. harassment or non-harassment. There has been no multi level classification of YouTube videos. Previous works have classified videos on a single level only whereas our work brings novelty to the approach by classifying videos into multi labels. Such a work can be useful for law enforcement and intelligence agencies to identify the unwanted and malicious videos on the Internet. The proposed approach has successfully generated multiple labels for unlabelled test videos.","PeriodicalId":6651,"journal":{"name":"2017 7th International Conference on Cloud Computing, Data Science & Engineering - Confluence","volume":"112 1","pages":"586-590"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Metadata based multi-labelling of YouTube videos\",\"authors\":\"Neha Agarwal, Rajat Gupta, S. Singh, V. Saxena\",\"doi\":\"10.1109/CONFLUENCE.2017.7943219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is a challenging task to find video of interests on YouTube due to huge size of its repository. Multiple labels, if provided, can make search faster. This paper describes a two level automated mechanism to generate multiple labels for videos using their text based meta-data features. The first level of classification categorize videos into 5 harassment categories and then a second level generate a positive or negative label i.e. harassment or non-harassment. There has been no multi level classification of YouTube videos. Previous works have classified videos on a single level only whereas our work brings novelty to the approach by classifying videos into multi labels. Such a work can be useful for law enforcement and intelligence agencies to identify the unwanted and malicious videos on the Internet. The proposed approach has successfully generated multiple labels for unlabelled test videos.\",\"PeriodicalId\":6651,\"journal\":{\"name\":\"2017 7th International Conference on Cloud Computing, Data Science & Engineering - Confluence\",\"volume\":\"112 1\",\"pages\":\"586-590\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 7th International Conference on Cloud Computing, Data Science & Engineering - Confluence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CONFLUENCE.2017.7943219\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 7th International Conference on Cloud Computing, Data Science & Engineering - Confluence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CONFLUENCE.2017.7943219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

在YouTube上找到感兴趣的视频是一项具有挑战性的任务,因为它的存储库规模巨大。如果提供多个标签,可以使搜索更快。本文描述了一种两级自动化机制,利用基于文本的元数据特性为视频生成多个标签。第一级分类将视频分为5个骚扰类别,然后第二级生成正面或负面标签,即骚扰或非骚扰。YouTube视频还没有多级分类。以前的作品仅在单个级别上对视频进行分类,而我们的工作通过将视频分类为多个标签,为该方法带来了新颖性。这项工作可以帮助执法和情报机构识别互联网上不需要的和恶意的视频。该方法成功地为未标记的测试视频生成了多个标签。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Metadata based multi-labelling of YouTube videos
It is a challenging task to find video of interests on YouTube due to huge size of its repository. Multiple labels, if provided, can make search faster. This paper describes a two level automated mechanism to generate multiple labels for videos using their text based meta-data features. The first level of classification categorize videos into 5 harassment categories and then a second level generate a positive or negative label i.e. harassment or non-harassment. There has been no multi level classification of YouTube videos. Previous works have classified videos on a single level only whereas our work brings novelty to the approach by classifying videos into multi labels. Such a work can be useful for law enforcement and intelligence agencies to identify the unwanted and malicious videos on the Internet. The proposed approach has successfully generated multiple labels for unlabelled test videos.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hydrological Modelling to Inform Forest Management: Moving Beyond Equivalent Clearcut Area Enhanced feature mining and classifier models to predict customer churn for an E-retailer Towards the practical design of performance-aware resilient wireless NoC architectures Adaptive virtual MIMO single cluster optimization in a small cell Software effort estimation using machine learning techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1