让我们证明!用于信任网络的多模态证书交换

Tobias Mueller
{"title":"让我们证明!用于信任网络的多模态证书交换","authors":"Tobias Mueller","doi":"10.1109/ICOIN50884.2021.9333877","DOIUrl":null,"url":null,"abstract":"On the Internet, trust is difficult to obtain. With the rise of the possibility of obtaining gratis x509 certificates in an automated fashion, the use of TLS for establishing secure connections has significantly increased. However, other use cases, such as end-to-end encrypted messaging, do not yet have an easy method of managing trust in the public keys. This is particularly true for personal communication where two people want to securely exchange messages. While centralised solutions, such as Signal, exist, decentralised and federated protocols lack a way of conveniently and securely exchanging personal certificates.This paper presents a protocol and an implementation for certifying OpenPGP certificates. By offering multiple means of data transport protocols, it achieves robust and resilient certificate exchange between an attestee, the party whose key certificate is to be certified, and an attestor, the party who will express trust in the certificate once seen. The data can be transferred either via the Internet or via proximity-based technologies, i.e. Bluetooth or link-local networking. The former presents a challenge when the parties interested in exchanging certificates are not physically close, because an attacker may tamper with the connection. Our evaluation shows that a passive attacker learns nothing except the publicly visible metadata, e.g. the timings of the transfer while an active attacker can either have success with a very low probability or be detected by the user.","PeriodicalId":6741,"journal":{"name":"2021 International Conference on Information Networking (ICOIN)","volume":"20 1","pages":"758-763"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Let’s Attest! Multi-modal Certificate Exchange for the Web of Trust\",\"authors\":\"Tobias Mueller\",\"doi\":\"10.1109/ICOIN50884.2021.9333877\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"On the Internet, trust is difficult to obtain. With the rise of the possibility of obtaining gratis x509 certificates in an automated fashion, the use of TLS for establishing secure connections has significantly increased. However, other use cases, such as end-to-end encrypted messaging, do not yet have an easy method of managing trust in the public keys. This is particularly true for personal communication where two people want to securely exchange messages. While centralised solutions, such as Signal, exist, decentralised and federated protocols lack a way of conveniently and securely exchanging personal certificates.This paper presents a protocol and an implementation for certifying OpenPGP certificates. By offering multiple means of data transport protocols, it achieves robust and resilient certificate exchange between an attestee, the party whose key certificate is to be certified, and an attestor, the party who will express trust in the certificate once seen. The data can be transferred either via the Internet or via proximity-based technologies, i.e. Bluetooth or link-local networking. The former presents a challenge when the parties interested in exchanging certificates are not physically close, because an attacker may tamper with the connection. Our evaluation shows that a passive attacker learns nothing except the publicly visible metadata, e.g. the timings of the transfer while an active attacker can either have success with a very low probability or be detected by the user.\",\"PeriodicalId\":6741,\"journal\":{\"name\":\"2021 International Conference on Information Networking (ICOIN)\",\"volume\":\"20 1\",\"pages\":\"758-763\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Information Networking (ICOIN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOIN50884.2021.9333877\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Information Networking (ICOIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOIN50884.2021.9333877","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在互联网上,信任是很难获得的。随着以自动化方式获得免费x509证书的可能性的增加,使用TLS建立安全连接的情况显著增加。但是,其他用例(例如端到端加密消息传递)还没有一种简单的方法来管理公钥中的信任。当两个人想要安全地交换消息时,这一点尤其适用于个人通信。虽然集中式解决方案(如Signal)已经存在,但分散和联合协议缺乏一种方便、安全地交换个人证书的方法。本文提出了一种OpenPGP证书认证协议及其实现。通过提供多种数据传输协议,它实现了被认证方(其密钥证书要被认证的一方)和被认证方(一旦看到证书就表示信任的一方)之间的健壮和有弹性的证书交换。数据既可以通过互联网传输,也可以通过基于距离的技术(即蓝牙或链路本地网络)传输。当对交换证书感兴趣的各方在物理上并不接近时,前者会带来挑战,因为攻击者可能会篡改连接。我们的评估表明,被动攻击者除了公开可见的元数据之外什么都不知道,例如传输的时间,而主动攻击者要么以非常低的概率成功,要么被用户检测到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Let’s Attest! Multi-modal Certificate Exchange for the Web of Trust
On the Internet, trust is difficult to obtain. With the rise of the possibility of obtaining gratis x509 certificates in an automated fashion, the use of TLS for establishing secure connections has significantly increased. However, other use cases, such as end-to-end encrypted messaging, do not yet have an easy method of managing trust in the public keys. This is particularly true for personal communication where two people want to securely exchange messages. While centralised solutions, such as Signal, exist, decentralised and federated protocols lack a way of conveniently and securely exchanging personal certificates.This paper presents a protocol and an implementation for certifying OpenPGP certificates. By offering multiple means of data transport protocols, it achieves robust and resilient certificate exchange between an attestee, the party whose key certificate is to be certified, and an attestor, the party who will express trust in the certificate once seen. The data can be transferred either via the Internet or via proximity-based technologies, i.e. Bluetooth or link-local networking. The former presents a challenge when the parties interested in exchanging certificates are not physically close, because an attacker may tamper with the connection. Our evaluation shows that a passive attacker learns nothing except the publicly visible metadata, e.g. the timings of the transfer while an active attacker can either have success with a very low probability or be detected by the user.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Study on the Cluster-wise Regression Model for Bead Width in the Automatic GMA Welding GDFed: Dynamic Federated Learning for Heterogenous Device Using Graph Neural Network A Solution for Recovering Network Topology with Missing Links using Sparse Modeling Real-time health monitoring system design based on optical camera communication Multimedia Contents Retrieval based on 12-Mood Vector
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1