使用基于copula的依赖源分离对正反文档进行分离

A. Keziou, N. Mamouni, H. Fenniri
{"title":"使用基于copula的依赖源分离对正反文档进行分离","authors":"A. Keziou, N. Mamouni, H. Fenniri","doi":"10.1109/SAM48682.2020.9104250","DOIUrl":null,"url":null,"abstract":"For separating linear instantaneous mixtures of independent/dependent source components, we extend the independent/dependent blind source separation method, proposed by [1], to cover the more general case, where the dependency structure of the source components and the related parameter are both unknown. An application is given for separating scanned recto-verso documents.","PeriodicalId":6753,"journal":{"name":"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)","volume":"12 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Separation of recto-verso documents using copula based dependent source separation\",\"authors\":\"A. Keziou, N. Mamouni, H. Fenniri\",\"doi\":\"10.1109/SAM48682.2020.9104250\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For separating linear instantaneous mixtures of independent/dependent source components, we extend the independent/dependent blind source separation method, proposed by [1], to cover the more general case, where the dependency structure of the source components and the related parameter are both unknown. An application is given for separating scanned recto-verso documents.\",\"PeriodicalId\":6753,\"journal\":{\"name\":\"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)\",\"volume\":\"12 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAM48682.2020.9104250\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM48682.2020.9104250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

对于分离独立/依赖源分量的线性瞬时混合物,我们扩展了[1]提出的独立/依赖盲源分离方法,以涵盖源分量的依赖结构和相关参数都未知的更一般的情况。给出了一种分离扫描的正反文档的应用程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Separation of recto-verso documents using copula based dependent source separation
For separating linear instantaneous mixtures of independent/dependent source components, we extend the independent/dependent blind source separation method, proposed by [1], to cover the more general case, where the dependency structure of the source components and the related parameter are both unknown. An application is given for separating scanned recto-verso documents.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GPU-accelerated parallel optimization for sparse regularization Efficient Beamforming Training and Channel Estimation for mmWave MIMO-OFDM Systems Online Robust Reduced-Rank Regression Block Sparsity Based Chirp Transform for Modeling Marine Mammal Whistle Calls Deterministic Coherence-Based Performance Guarantee for Noisy Sparse Subspace Clustering using Greedy Neighbor Selection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1